
MQSeries®

Release Guide

Version 5.2

GC34-5761-01

���

MQSeries®

Release Guide

Version 5.2

GC34-5761-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix. Notices” on page 85.

Second edition (December 2000)

This edition applies to the following products:
v MQSeries for AIX®, V5.2

v MQSeries for AS/400®, V5.2

v MQSeries for HP-UX, V5.2

v MQSeries for Linux, V5.2

v MQSeries for Sun Solaris, V5.2

v MQSeries for Windows NT® and Windows® 2000, V5.2

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book. v
Who this book is for v
How to use this book v
Terms used in this book v

Chapter 1. New function in all V5.2 products 1
Performance enhancements 1
MQSeries for Linux 2
Application programming enhancements . . . 2

MQCMD_LEVEL_520 CommandLevel value 2
MQRFH2 — Version-2 rules and formatting
header 2
Processing of CodedCharSetId fields in
MQSeries headers 3
C++ support for MQCNO Version 2 and
Version 3 3
Applications using the IMS bridge 3

Object Authority Manager (OAM)
enhancements 4

Refreshing the OAM after changing a user’s
authorization 4
Authorization data held on local queue . . 8

Installation 9
Support for Java on MQSeries 9
MQSeries clients 9

Enhanced channel support 10
Multiple thread support — pipelining . . 10
Channel send exit programs — reserving
space 11
User IDs with encrypted passwords . . . 14

Support for DHCP in queue manager clusters 14
When you don’t know your queue
manager’s network address 14
When you don’t know the repository
queue manager’s name 18
MQSC command syntax changes 20
Programmable Command Formats (PCFs) 20

Command rcdmqimg issues media recovery
messages synchronously 21

Optional parameters 21
RCDMQMIMG command for MQSeries for
AS/400 22

Queue manager cluster workload exits . . . 22
Dynamic space allocation for workload
data records 22

Navigating cluster workload records . . . 23
The MQSeries library 39

Chapter 2. New function in MQSeries for
Windows NT and Windows 2000 V5.2 only . 41
Microsoft® Transaction Server (MTS) support 41
Installing MQSeries for Windows NT and
Windows 2000 41

Launching the Default Configuration . . 41
Default Configuration for DHCP machines 41
Postcard application enhancements . . . 42

Custom services. 42
New command: amqmdain (MQSeries
services control). 43

Browsing the dead-letter header 45
Guidelines for Windows 2000 45

When you get a “group not found” error 45
When you have problems with MQSeries
and domain controllers 46
When MQSeries appears to halt when
reporting an error 48
When Default Configuration gives errors 48
When you have problems with a
Multilanguage system. 48
Applying security template files 49

Chapter 3. New function in V5.2 UNIX®

systems only 51
New function for UNIX systems 51

Threaded applications. 51
Support for Websphere as an XA
coordinator 52

UNIX signal handling on MQSeries V5.2
products 52

Unthreaded applications 54
Threaded applications. 54
Fastpath (trusted) applications 55
MQI function calls within signal handlers 56
Signals during MQI calls 56
User exits and installable services 56

New function for Sun Solaris only 57
Sun Workshop C++ Compiler 5.0 and 6.0 57
Communications support extended to
include SNAP–IX 57

New function for AIX only 78

© Copyright IBM Corp. 1999, 2000 iii

Support for draft 10 threads. 78
Enhanced support for Communications
Server for AIX V5 78

Chapter 4. New function in MQSeries for
AS/400 V5.2 only 81
CL commands 81

ENDCCTJOB option to the ENDMQM
(End message queue manager) CL
command 81

Exception handling 82

Unthreaded applications 82
Threaded applications. 82

Access to MQSeries objects 83
Support for nonthreaded listener 83

Appendix. Notices 85
Trademarks 87

Index 89

Sending your comments to IBM 93

iv MQSeries V5.2 Release Guide

About this book

This book introduces all new function in MQSeries Version 5 Release 2.

Who this book is for

This book is for all users of any of the following products:
v MQSeries for AIX, V5.2
v MQSeries for AS/400, V5.2
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Windows NT and Windows 2000, V5.2

How to use this book

The descriptions of the new function in this book are in addition to, and must
be used in conjunction with, the latest editions of the MQSeries cross-product
books. These books are provided in softcopy form (Adobe Acrobat PDF and
HTML) in the product package.

Terms used in this book

The terms “click” and “right-click” are used to describe item selection with
the mouse. For keyboard alternatives refer to the Windows NT or Windows
2000 help.

© Copyright IBM Corp. 1999, 2000 v

vi MQSeries V5.2 Release Guide

Chapter 1. New function in all V5.2 products

This chapter introduces the new function that applies to all MQSeries V5.2
products. It contains these sections:
v “Performance enhancements”
v “MQSeries for Linux” on page 2
v “Application programming enhancements” on page 2
v “Object Authority Manager (OAM) enhancements” on page 4
v “Installation” on page 9
v “Enhanced channel support” on page 10
v “Support for DHCP in queue manager clusters” on page 14
v “Command rcdmqimg issues media recovery messages synchronously” on

page 21
v “Queue manager cluster workload exits” on page 22
v “The MQSeries library” on page 39

Performance enhancements

Version 5.2 introduces performance enhancements to all the MQSeries
products. Although no general statement can be made about how these
enhancements might affect your applications, their primary aim is to improve
queue manager throughput. The enhancements comprise improvements to:
v The function accessed through the Message Queue Interface (MQI)
v Channel performance
v Writing persistent messages to the log
v Application initialization and termination

These improvements are described briefly below. You will recognize some of
them in the function described later in this book, although others will be
apparent only when you run your MQSeries applications. For a more detailed
description of the performance measurements IBM® has made with MQSeries
V5.2, see the V5.2 Performance Report on the MQSeries Web site at
http://www.ibm.com/software/mqseries/.

MQI function
The function accessed through the MQI has been optimized for better
performance and makes better use of system services. Optimized MQI
functions also contribute to the other improvements described in this
section.

© Copyright IBM Corp. 1999, 2000 1

Channel performance
Channels can now transfer messages more efficiently with a process
called pipelining, which is described in “Multiple thread support —
pipelining” on page 10.

Persistent messages
Persistent messages are written to logs and queue data files. Writing
to the log is more efficient with MQSeries V5.2, thereby enhancing the
throughput of persistent messages.

Application initialization and termination
Application initialization involves obtaining resources from MQSeries;
those resources are returned when the application is terminated. These
operations are now less time-consuming, which can mean a significant
improvement if your application processes a few messages only.

The performance of your applications depends on many factors including, for
example, whether messages are persistent or nonpersistent. That is why no
general statement can be made about how your applications might be affected
by the enhancements described briefly above.

MQSeries for Linux

MQSeries is now available for the Linux platform. See the MQSeries for Linux
Quick Beginnings book for further information.

Application programming enhancements

The MQSeries V5.2 products provide several minor enhancements to the
application programming interface.

MQCMD_LEVEL_520 CommandLevel value
MQCMD_LEVEL_520 is returned by:
v MQSeries for AIX, V5.2
v MQSeries for AS/400, V5.2
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Windows NT and Windows 2000, V5.2

Refer to the MQSeries Application Programming Reference book for more
information about the CommandLevel attribute for the queue manager.

MQRFH2 — Version-2 rules and formatting header
MQRFH2, the version–2 rules and formatting header, is supported by the
MQSeries V5.2 products.

Performance enhancements

2 MQSeries V5.2 Release Guide

MQRFH2 is the standard header:
v Used by the MQSeries Integrator broker.
v Used for message passing between MQSeries implementations of the Java™

Messaging Service (JMS) API.

Refer to the MQSeries Application Programming Reference book for a description
of the MQRFH2 header.

Processing of CodedCharSetId fields in MQSeries headers
The CodedCharSetId field in the MQMD and other MQSeries headers can have
a new value, MQCCSI_INHERIT. As a result, the behavior of the existing
value MQCCSI_Q_MGR, and of the MQPUT, MQPUT1, and MQGET calls, is
slightly altered. For more information about these changes, read the
description of the CodedCharSetId field of the MQMD and other MQSeries
headers in the MQSeries Application Programming Reference book.

The description of the MQCCSI_DEFAULT value of the CodedCharSetId field in
the MQCFST and MQCFSL structures is now as follows:

MQCCSI_DEFAULT
Default coded character set identifier.

The CodedCharSetId of the data in the String field is defined by the
CodedCharSetId field in the header structure that precedes the MQCFH
structure, or by the CodedCharSetId field in the MQMD if the MQCFH
is at the start of the message.

For a description of the MQCFST and MQCFSL structures, see the MQSeries
Programmable System Management book.

C++ support for MQCNO Version 2 and Version 3
Clients making connections with the ImqQueueManager class in the C++
interface can associate a channel definition with the connection. For details of
the additions to the C++ interface, read the descriptions of the
ImqQueueManager and ImqChannel classes in the MQSeries Using C++ book.
This function is supported only when the Version field in MQCNO structure is
set to MQCNO_VERSION_2 or higher.

When the Version field in MQCNO structure is set to MQCNO_VERSION_3,
the ImqQueueManager class in the C++ interface also supports connection
tags. Refer to the MQSeries Using C++ book for more information.

Applications using the IMS bridge
Applications using the IMS bridge can obtain the transaction state in IMS
architected form if the TranState field in the MQIIH (IMS information header)
is set to MQITS_ARCHITECTED.

Application programming

Chapter 1. New function in all V5.2 products 3

Refer to the description of the MQIIH in the MQSeries Application Programming
Reference book for more information, and to the MQSeries Application
Programming Guide for guidance on how to use the MQITS_ARCHITECTED
constant.

Object Authority Manager (OAM) enhancements

This section describes some enhancements to the Object Authority Manager
(OAM). See the MQSeries System Administration book for a complete
description of the OAM.

Refreshing the OAM after changing a user’s authorization
In versions of MQSeries prior to V5.2, most changes to a user’s authorization
group membership made at the operating system level were not implemented
by the OAM immediately, but took effect only after the queue manager was
stopped and restarted.

In MQSeries V5.2, you can request that the OAM’s authorization group
information be updated immediately, reflecting changes made at the operating
system level, without needing to stop and restart the queue manager.

Note: When you change authorizations with the setmqaut command, the
OAM supplied with MQSeries implements such changes immediately.

This change is implemented as follows:
v The OAM has a new function, MQZ_REFRESH_CACHE, with a

corresponding entry point, MQZID_REFRESH_CACHE.
v The REFRESH SECURITY command is supported by the V5.2 products.
v MQZ_INIT_AUTHORITY returns MQZAS_VERSION_3 for the V5.2

products.

These enhancements are described fully in the remainder of this section.

MQZ_REFRESH_CACHE function
The authorization service provides an additional entry point for use by the
queue manager:

MQZ_REFRESH_CACHE
Refresh all authorizations.

This function is supplied as an installable service

Refer to the MQSeries Programmable System Management book for a complete
description of the authorization service interface and for information about
installable services.

Application programming

4 MQSeries V5.2 Release Guide

The reference information for the MQZ_REFRESH_CACHE installable service
is:

This function is provided by an MQZAS_VERSION_3 authorization service
component, and is invoked by the queue manager to refresh the list of
authorizations held internally by the component.

The function identifier for this function (for MQZEP) is
MQZID_REFRESH_CACHE (8L).

Syntax:

MQZ_REFRESH_CACHE
(QMgrName, ComponentData, Continuation, CompCode, Reason)

Parameters:

QMgrName (MQCHAR48) — input
Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is
not terminated by a null character.

The queue-manager name is passed to the component for information;
the authorization service interface does not require the component to
make use of it in any defined manner.

ComponentData (MQBYTE×ComponentDataLength) — input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided
by this component are preserved, and presented the next time one of
this component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) — output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_REFRESH_CACHE this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

Object Authority Manager

Chapter 1. New function in all V5.2 products 5

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) — output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) — output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X’000’) No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X’8F1’) Unexpected error occurred accessing service.

For more information on this reason code, see the MQSeries Application
Programming Reference book.

C invocation:
MQZ_REFRESH_CACHE (QMgrName, ComponentData,

&Continuation, &CompCode, &Reason);

Declare the parameters as follows:
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by

component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

RFRMQMAUT command for MQSeries for AS/400
The RFRMQMAUT, Refresh Security command is added to the CL Security
Commands for MQSeries for AS/400. The syntax of this command is:

RFRMQMAUT MQMNAME (queue-manager-name)

Refer to the MQSeries for AS/400 online help for more information about CL
commands and their syntax.

Object Authority Manager

6 MQSeries V5.2 Release Guide

REFRESH SECURITY — Programmable Command Format (PCF)
The reference material for the PCF of the REFRESH SECURITY command is
provided below. Refer to the MQSeries Programmable System Management book
for more information about PCFs. The list of PCF commands and responses is
extended with:

Security command
“Refresh Security”

The Refresh Security (MQCMD_REFRESH_SECURITY) command refreshes
the list of authorizations held internally by the authorization service
component.

This PCF is supported if you are using the V5.2 products only.

Required parameters:
None

Optional parameters:
None

Error codes: In addition to the values for any command shown in the
MQSeries Programmable System Management book, for this command the
following may be returned in the response format header:

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

REFRESH SECURITY MQSC command
The syntax for the V5.2 products is:

66 REFRESH SECURITY
(*)

69

The optional * parameter specifies that the security refresh is to be performed
for all resource classes.

Refer to the MQSeries MQSC Command Reference book for a complete
description of the REFRESH SECURITY command. The Table of “Commands
for security administration” in the same book is amended to show that:
v This command is supported on AIX, OS/400®, HP-UX, Linux, OS/390®,

Sun Solaris, and Windows NT only.
v There is a PCF equivalent for REFRESH SECURITY.

Object Authority Manager

Chapter 1. New function in all V5.2 products 7

Authorization data held on local queue
Queue managers running the OAM provided with MQSeries V5.2 store
authorization data on a local queue, called SYSTEM.AUTH.DATA.QUEUE.
This name is added to the list of reserved queue names in the MQSeries
MQSC Command Reference book.

Authorization data is managed by the amqzfuma process (amqzfuma.exe for
Windows NT and Windows 2000). When you stop and remove queue
managers manually, as described in Appendix E of the MQSeries System
Administration book, amqzfuma (AMQZFUMA.EXE) should be ended after amqzlaa0
(AMQZLAA0.EXE) and before amqzxma0 (AMQZXMA0.EXE). AMQZFUMA is added to
the section in the MQSeries for AS/400 System Administration book, listing the
MQSeries tasks that run when a queue manager is running. The function of
AMQZFUMA is to “Manage authorization data”.

The function provided by the OAM is unaffected by this change and queue
managers are automatically created to use the Version 5.2 OAM as the default
authorization service component. This version creates no new authorization
files, and existing files are no longer updated or deleted. The section entitled
“Authorization files” in Chapter 10 of the MQSeries System Administration
book no longer applies.

Migration
All authorization data is migrated from the authorization files to the
authorization queue the first time you restart the queue manager after
installing Version 5.2. If the OAM detects a missing file and:
v The authorization applies to a single object, the OAM gives the mqm group

(Administrator for Windows NT and Windows 2000) access to the object
and continues with the migration. Message AMQ5528 is written to the
queue manager’s error log. Refer to the MQSeries Messages book for more
information about message AMQ5528.

v The authorization applies to a class of objects, the OAM stops the
migration. The queue manager does not start until the file has been
replaced.

When you still want to store authorization data in files
This section tells you how you can continue to store authorization data in
files. However, if you do so, the performance of the OAM can be affected.
Storing authorization data on a local queue reduces the time required to check
an authorization.

The default OAM service module is amqzfu (amqzfu.dll for Windows NT and
Windows 2000). Version 5.2 also provides the previous service module as
amqzfu0 (amqzfu0.dll). There are two ways in which you can use the
previous module to continue to store authorization data in files:

Object Authority Manager

8 MQSeries V5.2 Release Guide

v Modify the Module attribute in the ServiceComponent stanza of the qm.ini
file (registry entry for Windows NT and Windows 2000) to use amqzfu0
(amqzfu0.dll). Note that this option is possible only for queue managers
created with a version of MQSeries prior to V5.2.

v Replace the amqzfu module (amqzfu.dll) by the previous version. For
example, you can do this by:
1. Removing the new amqzfu module
2. Renaming amqzfu0 as amqzfu

Note: You can restore the new amqzfu module from the copy provided as
amqzfu1 (amqzfu1.dll).

Note
Once you have created or restarted a queue manager with the new
amqzfu module, you can no longer replace the amqzfu module
(amqzfu.dll) with the previous version. The migration process, described
above, is not reversible.

You can view authorization data with the dspmqaut command. Refer to the
MQSeries System Administration book for a complete description of this
command.

Installation

This section tells you about installing support for Java on MQSeries and
MQSeries clients for the V5.2 products.

Support for Java on MQSeries
Support for Java on MQSeries is separately installable from the CD-ROM
included in this product package. Alternatively, you can download support
for Java on MQSeries from the MQSeries Web site at
http://www.ibm.com/software/mqseries/, where the latest version of this
support is always available.

MQSeries clients
The following MQSeries clients are available on the Clients CD-ROM included
in the V5.2 product package:
v MQSeries client for AIX
v MQSeries client for HP-UX
v MQSeries client for Linux
v MQSeries client for Sun Solaris
v MQSeries client for Windows NT and Windows 2000
v MQSeries client for Windows 95 and Windows 98

Object Authority Manager

Chapter 1. New function in all V5.2 products 9

Other clients can be obtained from the MQSeries Web site.

Enhanced channel support

The V5.2 products provide enhancements to MQSeries channel support that:
v Allow a message channel agent (MCA) to use multiple threads.
v Allow channel send exit programs to add their own data prior to

transmission.

Advice is added for “User IDs with encrypted passwords” on page 14.

Multiple thread support — pipelining
With MQSeries V5.2, you can optionally allow a message channel agent
(MCA) to transfer messages using multiple threads. This process, called
pipelining, enables the MCA to transfer messages more efficiently, with fewer
wait states, which improves channel performance. For Version 5.2, each MCA
is limited to a maximum of two threads.

Refer to the MQSeries Intercommunication book for a complete description of
channels and how they operate.

You control pipelining with the PipeLineLength parameter in the qm.ini file.
This parameter is added to the CHANNELS stanza:

PipeLineLength=1|number
This attribute specifies the maximum number of concurrent threads a
channel will use. The default is 1. Any value greater than 1 will be
treated as 2.

With MQSeries for Windows NT and Windows 2000, V5.2, use the MQSeries
Services snap-in to set the PipeLineLength parameter in the registry. Refer to
the MQSeries System Administration book for a complete description of the
CHANNELS stanza.

Notes:

1. PipeLineLength applies only to the V5.2 products.
2. Pipelining is effective only for TCP/IP channels.

When you use pipelining, the queue managers at both ends of the channel
must be configured to have a PipeLineLength greater than 1.

Channel exit considerations
Note that pipelining can cause some exit programs to fail, because:
v Exits might not be called serially.
v Exits might be called alternately from different threads.

Channel support

10 MQSeries V5.2 Release Guide

Check the design of your exit programs before you use pipelining:
v Exits must be reentrant at all stages of their execution.
v When you use MQI calls, remember that MQI handles are thread-specific.

Consider a message exit that opens a queue and uses its handle for MQPUT
calls on all subsequent invocations of the exit. This fails in pipelining mode
because the exit is called from different threads. To avoid this failure, keep a
queue handle for each thread and check the thread identifier each time the
exit is invoked.

Channel send exit programs — reserving space

You can use send and receive exits to transform the data before transmission.
With MQSeries V5.2, channel send exit programs can add their own data
about the transformation by reserving space in the transmission buffer. This
data is processed by the receive exit program and then removed from the
buffer. For example, you might want to encrypt the data and add a security
key for decryption. Refer to the MQSeries Intercommunication book for a
complete description of channel exit programs.

How you reserve space and use it
Channel exit programs are passed an MQCXP parameter block. With
MQSeries V5.2 a new field, ExitSpace, is added to the MQCXP structure, as
described in “MQCXP — Channel exit parameter structure” on page 12.

When the send exit program is called for initialization, set the ExitSpace field
to the number of bytes to be reserved. ExitSpace can be set only during
initialization, that is when ExitReason has the value MQXR_INIT. When the
send exit is invoked immediately before transmission, with ExitReason set to
MQXR_XMIT, ExitSpace bytes are reserved in the transmission buffer.

The send exit need not use all of the reserved space. It can use less than
ExitSpace bytes or, if the transmission buffer is not full, the exit can use more
than the amount reserved. Refer to the MQSeries Intercommunication book for
information about the maximum transmission size. When setting the value of
ExitSpace, you must leave at least 1 KB for message data in the transmission
buffer. Note that channel performance can be affected if reserved space is
used for large amounts of data.

What happens at the receiving end of the channel
Channel receive exit programs must be set up to be compatible with the
corresponding send exits. Receive exits must know the number of bytes in the
reserved space and must remove the data in that space.

Channel support

Chapter 1. New function in all V5.2 products 11

Multiple send exits
You can specify a list of send and receive exit programs to be run in
succession. MQSeries maintains a total for the space reserved by all of the
send exits. This total space must leave at least 1 KB for message data in the
transmission buffer.

The following example shows how space is allocated for three send exits,
called in succession:
1. When called for initialization:

v Send exit A reserves 1 KB.
v Send exit B reserves 2 KB.
v Send exit C reserves 3 KB.

2. The maximum transmission size is 32 KB and the user data is 5 KB long.
3. Exit A is called with 5 KB of data; up to 27 KB are available, because 5KB

is reserved for exits B and C. Exit A adds 1KB, the amount it reserved.
4. Exit B is called with 6 KB of data; up to 29 KB are available, because 3KB

is reserved for exit C. Exit B adds 1KB, less than the 2KB it reserved.
5. Exit C is called with 7 KB of data; up to 32 KB are available. Exit C adds

10K, more than the 3KB it reserved. This is valid, because the total amount
of data, 17 KB, is less than the 32KB maximum.

MQCXP — Channel exit parameter structure
Refer to the MQSeries Intercommunication book for a complete description of
the MQCXP structure.

The following value is added to the description of the Version field:

MQXCP_VERSION_5
Version-5 channel exit parameter structure.

The field has this value in the following environments: AIX, HP-UX,
Linux, AS/400, Sun Solaris, Windows NT. Send and receive exits are
also supported for MQSeries clients.

A new field, ExitSpace, is added to the end of the MQCXP structure.

ExitSpace (MQLONG)
Number of bytes in transmission buffer reserved for exit to use.

This field is relevant only for a send exit. It specifies the amount of
space in bytes that the MCA will reserve in the transmission buffer for
the exit to use. This allows the exit to add data to the transmission
buffer, for use by a complementary receive exit at the other end. The
data added by the send exit must be removed by the receive exit.

Note: This facility should not be used to send large amounts of data,
as this may degrade the performance of the channel.

Channel support

12 MQSeries V5.2 Release Guide

By setting ExitSpace, the exit is guaranteed that there will always be at
least that number of bytes available in the transmission buffer for the
exit to use. However, the exit can use less than the amount reserved,
or more than the amount reserved if there is space available in the
transmission buffer. The exit space in the buffer is provided after the
existing data.

ExitSpace can be set by the exit only when ExitReason has the value
MQXR_INIT; in all other cases the value returned by the exit is
ignored. On input to the exit, ExitSpace is zero for the MQXR_INIT
call, and is the value returned by the MQXR_INIT call in other cases.

If any of the following applies, the MCA outputs an error message
and closes the channel:
v The ExitSpace value returned by the MQXR_INIT call is negative.
v When MQXR_INIT is called, there is less than 1 KB available in the

transmission buffer for message data after reserving the requested
exit space for all of the send exits in the chain.

v During data transfer the exits in the send exit chain allocate more
user space than they reserved such that there is less than 1 KB left
in the transmission buffer for message data.

The limit of 1 KB allows the control and administrative flows that
occur on a channel to be processed by any chain of send exits without
a need for them ever to be segmented.

This is an input/output field to the exit if ExitReason is MQXR_INIT,
and an input field in all other cases. The field is not present if Version
is less than MQCXP_VERSION_5.

C declaration: For illustration purposes, only the end of the C declaration is
shown.

MQLONG ExitNumber; /* Exit number */
MQLONG ExitSpace; /* Number of bytes in transmission

buffer for exit to use */
} MQCXP;

Channel support

Chapter 1. New function in all V5.2 products 13

User IDs with encrypted passwords
The following advice is added to the description of the UserID (USERID)
channel attribute in Chapter 6 of the MQSeries Intercommunication book, and to
the description of the USERID parameter to the DEFINE CHANNEL
command in Chapter 2 of the MQSeries MQSC Command Reference book.

On the receiving end, if passwords are kept in encrypted format and the LU
6.2 software is using a different encryption method, an attempt to start the
channel fails with invalid security details. You can avoid this by modifying
the receiving SNA configuration to either:
v Turn off password substitution, or
v Define a security user ID and password.

Support for DHCP in queue manager clusters

MQSeries V5.2 includes two enhancements pertaining to the use of clusters.
v The first enables you to define a cluster-receiver channel without specifying

your queue manager’s network address.
v The second enables you to define a cluster-sender channel without

specifying the name of the repository queue manager.

The purpose of these two enhancements is further to simplify the task of the
system administrator. It is no longer necessary for you to know the network
address of your queue manager, nor the names of the other queue managers
in the cluster.

This section describes these two enhancements. Read it in conjunction with
the MQSeries Queue Manager Clusters book, which describes the existing
function in full. Changes to the MQSeries MQSC Command Reference and
MQSeries Programmable System Management books, resulting from these
enhancements, are described at the end of this section.

When you don’t know your queue manager’s network address
When the network protocol that you are using is TCP/IP it is no longer
necessary to specify the network address of your queue manager when you
define a cluster-receiver channel. You can issue the DEFINE CHANNEL
command without supplying a value for CONNAME. MQSeries generates a
CONNAME for you, assuming the default port and using the current IP
address of the system. The generated CONNAME is always in the
dotted-decimal form, rather than in the form of an alphanumeric DNS host
name.

This facility is useful when you have machines using Dynamic Host
Configuration Protocol (DHCP). In earlier releases of MQSeries, you needed to

Channel support

14 MQSeries V5.2 Release Guide

update definitions manually each time DHCP issued a new IP address. With
MQSeries V5.2 you do not need to make any changes to your definitions
when your IP address changes.

Example of how to use this
Consider the second task described in the MQSeries Queue Manager Clusters
book, ‘Adding a new queue manager to a cluster’. Let us suppose that the
queue manager to be added, PARIS, is on a system that runs DHCP. The steps
you must take to perform this task are as follows.

1. Prepare the PARIS queue manager: This step is unaltered.

2. Determine which full repository PARIS should refer to first: This step is
unaltered.

Note: The remaining steps may be performed in any order. Before proceeding
with these steps make sure that queue manager PARIS is started. Also,
start a listener program on queue manager PARIS.

3. Define a CLUSRCVR channel on queue manager PARIS: On PARIS,
define:
DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CLUSTER(INVENTORY)

This advertises the queue manager’s availability to receive messages from
other queue managers in the cluster INVENTORY. There is no need to specify
the CONNAME, although you could, if you wish, specify CONNAME(' ').
MQSeries generates the CONNAME value using the current IP address of the
system.

4. Define a CLUSSDR channel on queue manager PARIS: This step is
unaltered. On PARIS, make the following definition:
DEFINE CHANNEL(TO.LONDON) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

The cluster achieved by task 2
The cluster set up by this task looks like this:

DHCP in queue manager clusters

Chapter 1. New function in all V5.2 products 15

By making only two definitions, a CLUSRCVR definition and a CLUSSDR
definition, we have added the queue manager PARIS to the cluster.

What are the effects?
Because you specified a blank for the CONNAME on the CLUSRCVR
definition, MQSeries generates a CONNAME from the IP address of the
system. Only the generated CONNAME is stored in the repositories. Other
queue managers in the cluster do not know that the CONNAME was
originally blank.

If you issue the DISPLAY CLUSQMGR command you will see the generated
CONNAME. However, if you issue the DISPLAY CHANNEL command from
the local queue manager, you will see that the CONNAME is blank.

If the queue manager is stopped and restarted with a different IP address,
because of DHCP, MQSeries regenerates the CONNAME and updates the
repositories accordingly.

LONDON

NEWYORK

INVENTQ

PARIS

TO.LONDON

TO.NEWYORK

TO.PARIS

Figure 1. The INVENTORY cluster with three queue managers

DHCP in queue manager clusters

16 MQSeries V5.2 Release Guide

Note
Auto-defined cluster-sender channels take their attributes from those
specified in the corresponding cluster-receiver channel definition on the
receiving queue manager. Even if there is a manually-defined
cluster-sender channel, its attributes are automatically modified to ensure
that they match those on the corresponding cluster-receiver definition.
Beware, therefore, that you could, for example, define a CLUSRCVR
without specifying a port number in the CONNAME parameter, whilst
manually defining a CLUSSDR that does specify a port number. When
the auto-defined CLUSSDR replaces the manually defined one, the port
number (taken from the CLUSRCVR) becomes blank. The default port
number would be used and the channel would fail.

Migration
This enhancement to MQSeries raises three migration questions:
v How can I upgrade an existing queue manager to a system that uses

DHCP?
v How will queue managers on previous versions of MQSeries handle it?
v Can I choose a queue manager to be a repository if it is on a system that

uses DHCP?

Upgrading an existing queue manager to a system that uses DHCP: These
are the steps:
1. Suspend the queue manager
2. Stop the cluster-receiver channel on the queue manager
3. Alter the CLUSRCVR definition to remove the CONNAME or set it to

blank
4. Restart the queue manager

How queue managers on previous versions of MQSeries handle it: Other
queue managers in a cluster do not know that the CLUSRCVR was defined
with a blank CONNAME. The repositories notify them of the generated
CONNAME only.

Cluster repositories and DHCP: If a queue manager is to host a cluster’s
repository, you need to know its host name or its IP address. You have to
specify this information in the CONNAME parameter when you make the
CLUSSDR definition on other queue managers joining the cluster.

If you use DHCP, the IP address is subject to change because DHCP allocates
a new IP address each time you restart a system. Therefore, it would not be
possible to specify the IP address in the CLUSSDR definitions. Even if all your
CLUSSDR definitions specified the hostname rather than the IP address, the

DHCP in queue manager clusters

Chapter 1. New function in all V5.2 products 17

definitions would still not be reliable. This is because DHCP does not
necessarily update the DNS directory entry for the host, with the new
address.

Note
Unless you have installed software that guarantees to keep your DNS
directory up-to-date, you should not nominate queue managers as
repositories if they are on systems that use DHCP.

When you don’t know the repository queue manager’s name
It is no longer necessary to specify the repository queue manager’s name
when you define a cluster-sender channel. So long as you know the naming
convention used for channels in your cluster you can make a CLUSSDR
definition using the +QMNAME+ construction. MQSeries substitutes the
correct repository queue manager name in place of +QMNAME+. The
resulting channel name is truncated to 20 characters.

Clearly this works only if your convention for naming channels includes the
name of the queue manager. For example, if you have a repository queue
manager called QM1 with a cluster-receiver channel called TO.QM1.ALPHA,
another queue manager can define a cluster-sender channel to this queue
manager, but specify the channel name as TO.+QMNAME+.ALPHA.

If you use the same naming convention for all your channels, be aware that
only one +QMNAME+ definition can exist at one time.

Example of how to use this
Again, consider the second task described in the MQSeries Queue Manager
Clusters book. Let us suppose that you do not know the name of the
repository queue manager on the system in London, but you do know the
channel-naming convention in use. The steps you must take to perform this
task are as follows.

1. Prepare the PARIS queue manager: This step is unaltered.

2. Determine which full repository PARIS should refer to first: This step is
unaltered.

Note: The remaining steps may be performed in any order. Before proceeding
with these steps make sure that queue manager PARIS is started. Also,
start a listener program on queue manager PARIS.

DHCP in queue manager clusters

18 MQSeries V5.2 Release Guide

3. Define a CLUSRCVR channel on queue manager PARIS: On PARIS,
define:
DEFINE CHANNEL(TO.PARIS) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(PARIS.CHSTORE.COM) CLUSTER(INVENTORY)

4. Define a CLUSSDR channel on queue manager PARIS: Although you
know the naming convention for channels in the cluster, you do not know the
name of the repository queue manager. On PARIS, make the following
definition:
DEFINE CHANNEL(TO.+QMNAME+) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(LONDON.CHSTORE.COM) CLUSTER(INVENTORY)

The cluster achieved by task 2
Again, we have added the queue manager PARIS to the cluster.

What are the effects?
On the PARIS queue manager, the CLUSSDR definition containing the string
+QMNAME+ is stored in the partial repository. On the system whose
CONNAME is LONDON.CHSTORE.COM (which you specified), MQSeries resolves
the +QMNAME+ to the queue manager name (LONDON). MQSeries then
matches the definition for a channel called TO.LONDON to the corresponding
CLUSRCVR definition.

MQSeries sends back the resolved channel name to the PARIS queue manager.
At PARIS, the CLUSSDR channel definition for the channel called
TO.+QMNAME+ is replaced by an internally-generated definition for
TO.LONDON. This definition contains the resolved channel name, but
otherwise is the same as the +QMNAME+ definition that you made. The
cluster repositories are also brought up-to-date with the channel definition
with the newly-resolved channel name.

Notes:

1. The channel created with the +QMNAME+ name becomes inactive
immediately. It is never used to transmit data.

2. Channel exits may see the channel name change between one invocation
and the next.

Migration
It is not possible to define a CLUSSDR channel using the +QMNAME+
construction to a queue manager on an earlier version of MQSeries. The
queue manager would not recognize the construction and would not be able
to find the channel.

DHCP in queue manager clusters

Chapter 1. New function in all V5.2 products 19

MQSC command syntax changes
These enhancements to the use of clusters alter the syntax of the DEFINE
CHANNEL command. Read this description in conjunction with the
description of the DEFINE CHANNEL command in the MQSeries MQSC
Command Reference book.

Note: These enhanced options are valid only if TRTYPE is TCP.

Cluster-sender channel
The parameter options for CHANNEL are changed. All other keywords and
parameters are unaltered.

66 DEFINE CHANNEL(string+QMNAME+)
CHANNEL(string+QMNAME+string)
CHANNEL(channel-name)

69

Note: The string +QMNAME+ must be complete and in upper case. Another
string can follow the +QMNAME+, but the resolved channel–name will
be truncated to 20 characters.

Cluster-receiver channel
The parameter options for CONNAME are changed. All other keywords and
parameters are unaltered.

66
CONNAME(’ ’)

CONNAME(string)
69

Programmable Command Formats (PCFs)
These enhancements to the queue manager clusters alter the definitions for
two of the parameters for the Create Channel
(MQCMD_CREATE_CHANNEL) command. Refer to the MQSeries
Programmable System Management book for a complete description of this
command.

ChannelName (MQCFST)
Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

For a ChannelType of MQCHT_CLUSRCVR and a TransportType of
MQXPT_TCP, this parameter can contain the string +QMNAME+.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

DHCP in queue manager clusters

20 MQSeries V5.2 Release Guide

For a ChannelType of MQCHT_CLUSSDR and a TransportType of
MQXPT_TCP, this parameter can be blank.

Command rcdmqimg issues media recovery messages synchronously

MQSeries V5.2 simplifies the process of managing your log files for recovery
and restart. The rcdmqimg command writes an image of one or more
MQSeries objects to the log for use in media recovery. In the MQSeries V5.2
products, rcdmqimg has an additional flag, the −l flag, that causes messages
AMQ7467 and AMQ7468 to be issued when rcdmqimg completes. Although
the queue manager will still issue these two messages when it periodically
takes a checkpoint, you do not need to wait for it to do so when you use
rcdmqimg with the −l flag.

Message AMQ7467 contains the name of the oldest log file needed to restart
the queue manager. Message AMQ7468 contains the name of the oldest log
file needed to do media recovery. You can use this information to archive and
delete files older than those identified by these messages. Read the MQSeries
System Administration book for more information about managing log files and
for a complete description of the rcdmqimg command. The revised syntax of
this command is:

66 rcdmqimg
-m QMgrName -z -l

-t ObjectType 6

6 GenericObjName 69

Optional parameters
Add the following optional parameter:

−l Requests that the log file information for the queue manager is issued
when the command completes.

Two messages, AMQ7467 and AMQ7468, are issued to the error log
and the standard error destination. These messages contain the names
of the log files that must be available to restart the queue manager
and to perform media recovery for all objects owned by the queue
manager.

Notes:

1. When issuing a sequence of rcdmqimg commands, include the −l
parameter only on the last command in the sequence. The log file
information is then gathered once only.

DHCP in queue manager clusters

Chapter 1. New function in all V5.2 products 21

2. When both the −z and −l parameters are included, the AMQ7467
and AMQ7468 messages are sent to the error logs but not to the
standard error destination. If no objects are processed, no messages
are issued to either location.

RCDMQMIMG command for MQSeries for AS/400
The RCDMQMIMG, Record MQM Object Image command has an additional
parameter, DSPJRNDATA, described below. Refer to the MQSeries for AS/400
System Administration book for a discussion of media images and to the
MQSeries for AS/400 online help for more information about CL commands
and their syntax.

The help text for the DSPJRNDATA parameter is:

Display Journal Receiver Data (DSPJRNDATA) — Help
Specifies whether additional messages should be written to the job log
when the command completes to inform the user about the journal
receivers that are still required by MQSeries.

The possible values are:

*NO No messages are written to the job log. This is the default
option.

*YES Messages are sent to the job log when the command
completes. The messages contain details about the journal
receivers that are required by MQSeries.

Queue manager cluster workload exits

MQSeries V5.2 enhances the operation of cluster workload exit programs. See
the MQSeries Queue Manager Clusters book for guidance on cluster workload
management and workload exit programs.

Dynamic space allocation for workload data records
MQSeries makes an initial space allocation for the repository that holds
workload management records. With V5.2, the allocation is increased
dynamically. In previous versions, the space allocation remained fixed.

When the size of the repository is dynamic, the offset fields in the workload
records contain handles. When the total size is fixed, these fields contain true
physical offsets. This affects how your workload exit program navigates the
records in the repository.

Dynamic space allocation is the default option, but if you have written your
own cluster workload exit program for versions prior to V5.2, and you do not
want to change it, you must set the repository size to be STATIC.

rcdmqimg

22 MQSeries V5.2 Release Guide

Note
If you want to change your cluster workload exit program to navigate
records in a dynamically allocated repository, you must use the
MQXCLWLN call, described in “Navigating cluster workload records”.

You set the repository size with the ClusterCacheType parameter in the qm.ini
file. This parameter is added to the TuningParameters stanza:

ClusterCacheType=DYNAMIC|STATIC
Specify DYNAMIC if you want the size of the workload record repository
to be increased automatically. This is the default option.

Specify STATIC if you want the total size of the workload record
repository to remain fixed at its initial value.

With MQSeries for Windows NT and Windows 2000, V5.2, use the MQSeries
Services snap-in to set the ClusterCacheType parameter in the registry.

Refer to the MQSeries System Administration book for more information about
the qm.ini file.

Navigating cluster workload records
This section describes the use of the MQXCLWLN call for navigating cluster
workload records and also documents:
v The current version of “MQWXP — Cluster workload exit parameter

structure” on page 26
v Changes to “MQWDR - Cluster workload destination-record structure” on

page 37
v Changes to “MQWQR - Cluster workload queue-record structure” on

page 37
v Changes to “MQWCR - Cluster workload cluster-record structure” on

page 38

You can use the MQXCLWLN call for both types of repository, that is,
whether the ClusterCacheType is set to DYNAMIC or STATIC. Your workload exit
program passes information about a record in the chain and the call returns
the address of the next record in the chain. The MQXCLWLN call is defined
in “MQXCLWLN - Cluster workload navigate records” on page 24.

If your cluster workload exit program expects fields to contain true physical
offsets, it will not work when the ClusterCacheType is set to DYNAMIC. When
your exit program is called with the ExitReason field in the version-2 MQWXP

Queue manager clusters

Chapter 1. New function in all V5.2 products 23

exit parameter structure set to MQXR_INIT, return the value
MQXR2_STATIC_CACHE in the ExitResponse2 field. This response causes the
queue manager to write to the error log or to display a message on the
operator console. The queue manager does not call the exit again until
ExitReason is set to MQXR_TERM.

See “MQWXP — Cluster workload exit parameter structure” on page 26 for a
full description of the version-2 MQWXP exit parameter structure, including
the use of the ExitResponse2 field.

Refer to the MQSeries Queue Manager Clusters book for further information
about the cluster workload exit and the data structures it uses.

MQXCLWLN - Cluster workload navigate records
The MQXCLWLN call is used to navigate through the chains of MQWDR,
MQWQR, and MQWCR records stored in the cluster cache. The cluster cache
is an area of main storage used to store information relating to the cluster.

This call is supported in the following environments: AIX, HP-UX, Linux,
AS/400, Sun Solaris, and Windows NT.

Syntax:

Parameters: The MQXCLWLN call has the following parameters.

ExitParms (MQWXP) – input/output
Exit parameter structure.

This is the parameter structure that was passed to the exit when the exit
was invoked.

CurrentRecord (MQPTR) – input
Address of current record.

This is the address of the record currently being examined by the exit. The
record must be one of the following types:
v Cluster workload destination record (MQWDR)
v Cluster workload queue record (MQWQR)
v Cluster workload cluster record (MQWCR)

NextOffset (MQLONG) – input
Offset of next record.

This is the offset of the next record or structure. NextOffset is the value of
the appropriate field in the current record, and must be the value of one
of the following fields:

MQXCLWLN (ExitParms, CurrentRecord, NextOffset, NextRecord,
CompCode, Reason)

MQXCLWLN

24 MQSeries V5.2 Release Guide

v ChannelDefOffset field in MQWDR
v ClusterRecOffset field in MQWDR
v ClusterRecOffset field in MQWQR
v ClusterRecOffset field in MQWCR

NextRecord (MQPTR) – output
Address of next record or structure.

This is the address of the next record or structure. If CurrentRecord is the
address of an MQWDR, and NextOffset is the value of the
ChannelDefOffset field, NextRecord is the address of the channel
definition structure MQCD.

If there is no next record or structure, the queue manager sets NextRecord
to the null pointer, and the call returns completion code
MQCC_WARNING and reason code MQRC_NO_RECORD_AVAILABLE.

CompCode (MQLONG) – output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_NO_RECORD_AVAILABLE

(2359, X'937') No record available.

If CompCode is MQCC_FAILED:
MQRC_CURRENT_RECORD_ERROR

(2357, X'935') Current-record parameter not valid.
MQRC_ENVIRONMENT_ERROR

(2012, X'7DC') Call not valid in environment.
MQRC_NEXT_OFFSET_ERROR

(2358, X'936') Next-offset parameter not valid.
MQRC_WXP_ERROR

(2356, X'934') Workload exit parameter structure not valid.

MQXCLWLN

Chapter 1. New function in all V5.2 products 25

Usage notes:

1. If the cluster cache is dynamic, the MQXCLWLN call must be used to
navigate through the records; the exit will terminate abnormally if simple
pointer-and-offset arithmetic is used to navigate through the records.
If the cluster cache is static, the MQXCLWLN call need not be used to
navigate through the records. However, it is recommended that
MQXCLWLN be used even when the cache is static, as this allows
migration to a dynamic cache without needing to change the cluster
workload exit.

C invocation:
MQXCLWLN (&ExitParms, CurrentRecord, NextOffset, &NextRecord,

&CompCode, &Reason);

Declare the parameters as follows:
MQWXP ExitParms; /* Exit parameter structure */
MQPTR CurrentRecord; /* Address of current record */
MQLONG NextOffset; /* Offset of next record */
MQPTR NextRecord; /* Address of next record or structure */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQWXP — Cluster workload exit parameter structure
The following table summarizes the fields in the structure.

Table 1. Fields in MQWXP

Field Description Page

StrucId Structure identifier 27

Version Structure version number 27

ExitId Type of exit 28

ExitReason Reason for invoking exit 28

ExitResponse Response from exit 29

ExitResponse2 Secondary response from exit 30

Feedback Feedback code 30

ExitUserArea Exit user area 31

ExitData Exit data 31

MsgDescPtr Address of message descriptor (MQMD) 31

MsgBufferPtr Address of buffer containing some or all of the
message data

32

MsgBufferLength Length of buffer containing message data 32

MsgLength Length of complete message 32

MQXCLWLN

26 MQSeries V5.2 Release Guide

Table 1. Fields in MQWXP (continued)

Field Description Page

QName Name of queue 32

QMgrName Name of local queue manager 32

DestinationCount Number of possible destinations 32

DestinationChosen Destination chosen 33

DestinationArrayPtr Address of an array of pointers to destination
records (MQWDR)

33

QArrayPtr Address of an array of pointers to queue
records (MQWQR)

33

Context Context information 33

CacheType Type of cluster cache 34

The MQWXP structure describes the information that is passed to the cluster
workload exit.

This structure is supported in the following environments: AIX, Compaq
Tru64 UNIX, HP-UX, OS/390, AS/400, OS/2, Sun Solaris, and Windows NT.

Fields:

StrucId (MQCHAR4)
Structure identifier.

The value is:

MQWXP_STRUC_ID
Identifier for cluster workload exit parameter structure.

For the C programming language, the constant
MQWXP_STRUC_ID_ARRAY is also defined; this has the same
value as MQWXP_STRUC_ID, but is an array of characters
instead of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is one of the following:

MQWXP_VERSION_1
Version-1 cluster workload exit parameter structure.

This version is supported in all environments.

MQWXP structure

Chapter 1. New function in all V5.2 products 27

MQWXP_VERSION_2
Version-2 cluster workload exit parameter structure.

This version is supported in the following environments: AIX,
HP-UX, Linux, AS/400, Sun Solaris, Windows NT.

Fields that exist only in the more-recent version of the structure are
identified as such in the descriptions that follow. The following constant
specifies the version number of the current version:

MQWXP_CURRENT_VERSION
Current version of cluster workload exit parameter structure.

Note: When a new version of the MQWXP structure is introduced, the
layout of the existing part is not changed. The exit should therefore
check that the version number is equal to or greater than the lowest
version which contains the fields that the exit needs to use.

This is an input field to the exit.

ExitId (MQLONG)
Type of exit.

This indicates the type of exit being called. The value is:

MQXT_CLUSTER_WORKLOAD_EXIT
Cluster workload exit.

This type of exit is supported in the following environments: AIX,
Compaq Tru64 UNIX, HP-UX, OS/2, OS/390, AS/400, Sun Solaris,
and Windows NT.

This is an input field to the exit.

ExitReason (MQLONG)
Reason for invoking exit.

This indicates the reason why the exit is being called. Possible values are:

MQXR_INIT
Exit initialization.

This indicates that the exit is being invoked for the first time. It
allows the exit to acquire and initialize any resources that it may
need (for example: main storage).

MQXR_TERM
Exit termination.

This indicates that the exit is about to be terminated. The exit
should free any resources that it may have acquired since it was
initialized (for example: main storage).

MQWXP structure

28 MQSeries V5.2 Release Guide

MQXR_CLWL_OPEN
Called from MQOPEN processing.

MQXR_CLWL_PUT
Called from MQPUT or MQPUT1 processing.

MQXR_CLWL_MOVE
Called from MCA when the channel state has changed.

MQXR_CLWL_REPOS
Called from MQPUT or MQPUT1 processing for a
repository-manager PCF message.

MQXR_CLWL_REPOS_MOVE
Called from MCA for a repository-manager PCF message when
the channel state has changed.

This is an input field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to indicate whether processing of the message
should continue. It must be one of the following:

MQXCC_OK
Continue normally.

This indicates that processing of the message should continue
normally. DestinationChosen identifies the destination to which
the message should be sent.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

This indicates that processing of the message should be
discontinued:
v For MQXR_CLWL_OPEN, MQXR_CLWL_PUT, and

MQXR_CLWL_REPOS invocations, the MQOPEN, MQPUT, or
MQPUT1 call fails with completion code MQCC_FAILED and
reason code MQRC_STOPPED_BY_CLUSTER_EXIT.

v For MQXR_CLWL_MOVE and MQXR_CLWL_REPOS_MOVE
invocations, the message is placed on the dead-letter queue.

MQXCC_SUPPRESS_EXIT
Suppress exit.

This indicates that processing of the current message should
continue normally, but that the exit should not be invoked again
until termination of the queue manager. The queue manager
processes subsequent messages as if the ClusterWorkloadExit

MQWXP structure

Chapter 1. New function in all V5.2 products 29

queue-manager attribute were blank. DestinationChosen identifies
the destination to which the current message should be sent.

If any other value is returned by the exit, the queue manager processes
the message as if MQXCC_SUPPRESS_FUNCTION had been specified.

This is an output field from the exit.

ExitResponse2 (MQLONG)
Secondary response from exit.

This is set to zero on entry to the exit. It can be set by the exit to provide
further information to the queue manager.

When ExitReason has the value MQXR_INIT, the exit can set one of the
following values in ExitResponse2:

MQXR2_STATIC_CACHE
Exit requires a static cluster cache.

If the exit returns this value, the exit need not use the
MQXCLWLN call to navigate the chains of records in the cluster
cache, but the cache must be static.

If the exit returns this value and the cluster cache is dynamic, the
exit cannot navigate correctly through the records in the cache. In
this situation, the queue manager processes the return from the
MQXR_INIT call as though the exit had returned
MQXCC_SUPPRESS_EXIT in the ExitResponse field.

MQXR2_DYNAMIC_CACHE
Exit can operate with either a static cache or a dynamic cache.

If the exit returns this value, the exit must use the MQXCLWLN
call to navigate the chains of records in the cluster cache. Failure
to do this is likely to result in the exit terminating abnormally.

If the exit does not set this field, or sets a value which is neither of the
above, MQXR2_STATIC_CACHE is assumed.

This is an input/output field to the exit.

Feedback (MQLONG)
Reserved.

This is a reserved field. The value is zero.

Reserved (MQLONG)
Reserved.

This is a reserved field. The value is zero.

MQWXP structure

30 MQSeries V5.2 Release Guide

ExitUserArea (MQBYTE16)
Exit user area.

This is a field that is available for the exit to use. It is initialized to
MQXUA_NONE (binary zero) before the first invocation of the exit, and
thereafter any changes made to this field by the exit are preserved across
the invocations of the exit that occur between the MQCONN call and the
matching MQDISC call. The field is reset to MQXUA_NONE when the
MQDISC call occurs. The first invocation of the exit is indicated by the
ExitReason field having the value MQXR_INIT.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQXUA_NONE_ARRAY is also defined; this has the same value
as MQXUA_NONE, but is an array of characters instead of a
string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH.
This is an input/output field to the exit.

ExitData (MQCHAR32)
Exit data.

This is set on input to the exit routine to the value of the
ClusterWorkloadData queue-manager attribute. If no value has been
defined for that attribute, this field is all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This is an
input field to the exit.

MsgDescPtr (PMQMD)
Address of message descriptor.

This is the address of a copy of the message descriptor (MQMD) for the
message being processed. Any changes made to the message descriptor by
the exit are ignored by the queue manager.

No message descriptor is passed to the exit if ExitReason has one of the
following values:

MQXR_INIT
MQXR_TERM
MQXR_CLWL_OPEN

In these cases, MsgDescPtr is the null pointer.

This is an input field to the exit.

MQWXP structure

Chapter 1. New function in all V5.2 products 31

MsgBufferPtr (PMQVOID)
Address of buffer containing some or all of the message data.

This is the address of a buffer containing a copy of the first
MsgBufferLength bytes of the message data. Any changes made to the
message data by the exit are ignored by the queue manager.

No message data is passed to the exit in the following cases:
v When MsgDescPtr is the null pointer.
v When the message has no data.
v When the ClusterWorkloadLength queue-manager attribute is zero.

In these cases, MsgBufferPtr is the null pointer.

This is an input field to the exit.

MsgBufferLength (MQLONG)
Length of buffer containing message data.

This is the length of the message data passed to the exit. This length is
controlled by the ClusterWorkloadLength queue-manager attribute, and
may be less than the length of the complete message (see MsgLength).

This is an input field to the exit.

MsgLength (MQLONG)
Length of complete message.

Be aware that the length of the message data passed to the exit
(MsgBufferLength) may be less than the length of the complete message.
MsgLength is zero if ExitReason is MQXR_INIT, MQXR_TERM, or
MQXR_CLWL_OPEN.

This is an input field to the exit.

QName (MQCHAR48)
Queue name.

This is the name of the destination queue; this queue is a cluster queue.

The length of this field is given by MQ_Q_NAME_LENGTH. This is an
input field to the exit.

QMgrName (MQCHAR48)
Name of local queue manager.

This is the name of the queue manager that has invoked the cluster
workload exit.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This
is an input field to the exit.

DestinationCount (MQLONG)
Number of possible destinations.

MQWXP structure

32 MQSeries V5.2 Release Guide

This specifies the number of destination records (MQWDR) that describe
instances of the destination queue. There is one MQWDR structure for
each possible route to each instance of the queue. The MQWDR structures
are addressed by an array of pointers (see DestinationArrayPtr).

This is an input field to the exit.

DestinationChosen (MQLONG)
Destination chosen.

This is the number of the MQWDR structure that identifies the route and
queue instance to which the message should be sent. The value is in the
range 1 through DestinationCount.

On input to the exit, DestinationChosen indicates the route and queue
instance that the queue manager has selected. The exit can accept this
choice, or choose a different route and queue instance. However, the value
returned by the exit must be in the range 1 through DestinationCount. If
any other value is returned, the queue manager uses the value that
DestinationChosen had on input to the exit.

This is an input/output field to the exit.

DestinationArrayPtr (PPMQWDR)
Address of an array of pointers to destination records.

This is the address of an array of pointers to destination records
(MQWDR). There are DestinationCount destination records.

This is an input field to the exit.

QArrayPtr (PPMQWQR)
Address of an array of pointers to queue records.

This is the address of an array of pointers to queue records (MQWQR). If
queue records are available, there are DestinationCount of them. If no
queue records are available, QArrayPtr is the null pointer.

Note: QArrayPtr can be the null pointer even when DestinationCount is
greater than zero.

This is an input field to the exit.

The following fields in this structure are not present if Version is less than
MQWXP_VERSION_2.

Context (MQPTR)
Context information.

This field is reserved for use by the queue manager. The exit must not
alter the value of this field.

MQWXP structure

Chapter 1. New function in all V5.2 products 33

This is an input field to the exit. This field is not present if Version is less
than MQWXP_VERSION_2.

CacheType (MQLONG)
Type of cluster cache.

This is the type of the cluster cache. It is one of the following:

MQCLCT_STATIC
Static cluster cache.

If the cluster cache has this type, the size of the cache is fixed, and
cannot grow as the queue manager operates. The MQXCLWLN
call need not be used to navigate the records in this type of cache.

MQCLCT_DYNAMIC
Dynamic cluster cache.

If the cluster cache has this type, the size of the cache is fixed, and
cannot grow as the queue manager operates. The MQXCLWLN
call need not be used to navigate the records in this type of cache.

This is an input field to the exit. This field is not present if Version is less
than MQWXP_VERSION_2.

MQWXP structure

34 MQSeries V5.2 Release Guide

C declaration:
typedef struct tagMQWXP {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ExitId; /* Type of exit */
MQLONG ExitReason; /* Reason for invoking exit */
MQLONG ExitResponse; /* Response from exit */
MQLONG ExitResponse2; /* Secondary response from exit */
MQLONG Feedback; /* Reserved */
MQLONG Reserved; /* Reserved */
MQBYTE16 ExitUserArea; /* Exit user area */
MQCHAR32 ExitData; /* Exit data */
PMQMD MsgDescPtr; /* Address of message descriptor */
PMQVOID MsgBufferPtr; /* Address of buffer containing some

or all of the message data */
MQLONG MsgBufferLength; /* Length of buffer containing message

data */
MQLONG MsgLength; /* Length of complete message */
MQCHAR48 QName; /* Queue name */
MQCHAR48 QMgrName; /* Name of local queue manager */
MQLONG DestinationCount; /* Number of possible destinations */
MQLONG DestinationChosen; /* Destination chosen */
PPMQWDR DestinationArrayPtr; /* Address of an array of pointers to

destination records */
PPMQWQR QArrayPtr; /* Address of an array of pointers to

queue records */
MQPTR Context; /* Context information */
MQLONG CacheType; /* Type of cluster cache */

} MQWXP;

MQWXP structure

Chapter 1. New function in all V5.2 products 35

System/390® assembler declaration:
MQWXP DSECT
MQWXP_STRUCID DS CL4 Structure identifier
MQWXP_VERSION DS F Structure version number
MQWXP_EXITID DS F Type of exit
MQWXP_EXITREASON DS F Reason for invoking exit
MQWXP_EXITRESPONSE DS F Response from exit
MQWXP_EXITRESPONSE2 DS F Secondary response from exit
MQWXP_FEEDBACK DS F Reserved
MQWXP_RESERVED DS F Reserved
MQWXP_EXITUSERAREA DS XL16 Exit user area
MQWXP_EXITDATA DS CL32 Exit data
MQWXP_MSGDESCPTR DS F Address of message
* descriptor
MQWXP_MSGBUFFERPTR DS F Address of buffer containing
* some or all of the message
* data
MQWXP_MSGBUFFERLENGTH DS F Length of buffer containing
* message data
MQWXP_MSGLENGTH DS F Length of complete message
MQWXP_QNAME DS CL48 Queue name
MQWXP_QMGRNAME DS CL48 Name of local queue manager
MQWXP_DESTINATIONCOUNT DS F Number of possible
* destinations
MQWXP_DESTINATIONCHOSEN DS F Destination chosen
MQWXP_DESTINATIONARRAYPTR DS F Address of an array of
* pointers to destination
* records
MQWXP_QARRAYPTR DS F Address of an array of
* pointers to queue records
MQWXP_LENGTH EQU *-MQWXP Length of structure

ORG MQWXP
MQWXP_AREA DS CL(MQWXP_LENGTH)

MQWXP structure

36 MQSeries V5.2 Release Guide

MQWDR - Cluster workload destination-record structure
The definition of the following fields in the MQWDR structure is changed:

ClusterRecOffset (MQLONG)
Offset of first cluster record.

This is the offset of the first MQWCR structure that belongs to this
MQWDR structure.

If the cluster cache is static, ClusterRecOffset contains the physical offset
of the next record; the offset is measured in bytes from the start of the
MQWDR structure.

If the cluster cache is dynamic, ClusterRecOffset contains the logical offset
of the next record; the logical offset cannot be used in pointer arithmetic.
To obtain the address of the next record, the MQXCLWLN call must be
used.

It is recommended that MQXCLWLN be used to navigate the records in
the cluster cache, as the call returns the address of the next record
regardless of type of cache in use.

This is an input field to the exit.

ChannelDefOffset (MQLONG)
Offset of channel definition structure.

This is the offset of the channel definition (MQCD) for the channel that
links the local queue manager to the queue manager identified by this
MQWDR structure.

If the cluster cache is static, ChannelDefOffset contains the physical offset
of the channel definition structure; the offset is measured in bytes from
the start of the MQWDR structure.

If the cluster cache is dynamic, ChannelDefOffset contains the logical offset
of the channel definition structure; the logical offset cannot be used in
pointer arithmetic. To obtain the address of the channel definition
structure, the MQXCLWLN call must be used.

It is recommended that MQXCLWLN be used to navigate the records and
structures in the cluster cache, as the call returns the address of the next
record or structure regardless of type of cache in use.

This is an input field to the exit.

MQWQR - Cluster workload queue-record structure
The definition of the following field in the MQWQR structure is changed:

ClusterRecOffset (MQLONG)
Offset of first cluster record.

MQWDR structure

Chapter 1. New function in all V5.2 products 37

This is the offset of the first MQWCR structure that belongs to this
MQWQR structure.

If the cluster cache is static, ClusterRecOffset contains the physical offset
of the next record; the offset is measured in bytes from the start of the
MQWQR structure.

If the cluster cache is dynamic, ClusterRecOffset contains the logical offset
of the next record; the logical offset cannot be used in pointer arithmetic.
To obtain the address of the next record, the MQXCLWLN call must be
used.

It is recommended that MQXCLWLN be used to navigate the records in
the cluster cache, as the call returns the address of the next record
regardless of type of cache in use.

This is an input field to the exit.

MQWCR - Cluster workload cluster-record structure
The definition of the following field in the MQWCR structure is changed:

ClusterRecOffset (MQLONG)
Offset of next cluster record.

This is the offset of the next MQWCR structure. If there are no more
MQWCR structures, ClusterRecOffset is zero.

If the cluster cache is static, ClusterRecOffset contains the physical offset
of the next record; the offset is measured in bytes from the start of the
MQWCR structure.

If the cluster cache is dynamic, ClusterRecOffset contains the logical offset
of the next record; the logical offset cannot be used in pointer arithmetic.
To obtain the address of the next record, the MQXCLWLN call must be
used.

It is recommended that MQXCLWLN be used to navigate the records in
the cluster cache, as the call returns the address of the next record
regardless of type of cache in use.

This is an input field to the exit.

MQWQR structure

38 MQSeries V5.2 Release Guide

The MQSeries library

The title of the MQSeries Command Reference book, SC33–1369, has been
changed to MQSeries MQSC Command Reference to reflect more accurately the
book’s contents. The order number remains the same.

The Application Programming Reference Summary, SX33–6095, has become the
MQSeries Programming Interfaces Reference Summary, and its scope has been
expanded to incorporate all MQSeries programming interfaces, including the
Message Queuing Interface (MQI), the Application Messaging Interface (AMI),
the administration interface (MQAI), event messages, PCF messages, and
installable services. The order number remains the same.

The MQSeries library

Chapter 1. New function in all V5.2 products 39

The MQSeries library

40 MQSeries V5.2 Release Guide

Chapter 2. New function in MQSeries for Windows NT and
Windows 2000 V5.2 only

This chapter introduces the new function that applies only to MQSeries for
Windows NT and Windows 2000 V5.2. It contains these sections:
v “Microsoft® Transaction Server (MTS) support”
v “Installing MQSeries for Windows NT and Windows 2000”
v “Custom services” on page 42
v “Browsing the dead-letter header” on page 45
v “Guidelines for Windows 2000” on page 45

Note that, in the latest editions of the MQSeries cross-product books, all
references to MQSeries for Windows NT apply also to MQSeries running in
the Windows 2000 environment.

Note also that the application type MQAT_WINDOWS_NT applies equally to
the Windows 2000 environment, and that the APPLTYPE value
WINDOWSNT, used with the MQSC DEFINE PROCESS and ALTER
PROCESS commands, applies to MQSeries in the Windows 2000 environment.

Microsoft® Transaction Server (MTS) support

MQSeries for Windows NT and Windows 2000 V5.2 includes support for
Microsoft Transaction Server (MTS). Refer to the online information provided
with the MQSeries product for a complete description of this support.

Installing MQSeries for Windows NT and Windows 2000

This section tells you about enhancements to the installation process for
MQSeries for Windows NT and Windows 2000.

Launching the Default Configuration
You can launch the Default Configuration Wizard at the end of the installation
process. Read the MQSeries for Windows NT and Windows 2000 Quick
Beginnings book for a complete description of the installation process.

Default Configuration for DHCP machines
You can set up the default configuration when your machine is using the
Dynamic Host Configuration Protocol (DHCP). With previous versions of
MQSeries, only machines with static IP addresses could set up the default
configuration. Refer to the MQSeries for Windows NT and Windows 2000 Quick
Beginnings book for more information.

© Copyright IBM Corp. 1999, 2000 41

Postcard application enhancements
The Postcard application can be used to verify communication between your
machine and:
v A queue manager in the default configuration cluster
v A queue manager in a cluster other than the default configuration cluster
v Queue managers that you have defined and added to the default

configuration cluster

With Version 5.1 of the Postcard application, you could communicate only
with machines that had installed a default queue manager in the default
configuration cluster.

Refer to the MQSeries for Windows NT and Windows 2000 Quick Beginnings
book for more information about using the Postcard application.

Custom services

The MQSeries Services snap-in for MQSeries for Windows NT and Windows
2000 V5.2 has an additional folder, Custom Services. You can find instances of
this folder in the IBM MQSeries Services folder and in the folder for each
queue manager. Custom services are services that you want to be started by
the IBM MQSeries Service to coordinate with the starting of queue managers.
See “MQSeries Services - Custom Services” in the online MQSeries Information
Center for information about working with custom services.

Refer to the MQSeries System Administration book for a description of
administration using the MQSeries Services snap-in.

The amqmdain command is added to the MQSeries control commands
described in the MQSeries System Administration book. Note that the
amqmdain command can be issued only in a Windows NT or Windows
2000 environment.

Use amqmdain to configure or control MQSeries Services, as an alternative to
using the MQSeries Services snap-in. Note that starting a queue manager
service with amqmdain is not the same as using strmqm from the command
line, because MQSeries Services execute in a non-interactive session, running
under a different user account. You can also configure a queue manager
service to start associated processes, such as listeners and trigger monitors.

Installation

42 MQSeries V5.2 Release Guide

New command: amqmdain (MQSeries services control)
The amqmdain command is defined as follows:

Purpose
Use the amqmdain command to query or configure MQSeries queue manager
services from the command line. You can also use amqmdain to ensure that
any registry entries you have edited manually are assigned the correct
security permissions.

Syntax

66 amqmdain start QMgrName
end QMgrName
auto QMgrName
manual QMgrName
crtlsr QMgrName LsrParams
crttrm QMgrName QueueName
crtchi QMgrName InitQName
status

QMgrName
all

cstmig filename
regsec

69

Keyword and parameter descriptions
Parameters are required unless the description states they are optional.

In every case, QMgrName is the name of the MQSeries queue manager to
which the command applies.

start QMgrName
Starts a queue manager service.

end QMgrName
Ends a queue manager service.

auto QMgrName
Sets a queue manager service to automatic startup.

manual QMgrName
Sets a queue manager service to manual startup.

crtlsr QMgrName LsrParams
Creates a listener service for a queue manager.

LsrParams
Parameters applicable to the runmqlsr command, for example
-t trptype -p Port. The parameters must be in pairs, but the
−m QMgrName parameter is not required, because it is
specified by the preceding parameter to the crtlsr keyword.

Custom services

Chapter 2. New function in MQSeries for Windows NT and Windows 2000 V5.2 only 43

Refer to the MQSeries System Administration book for a
complete description of the runmqlsr command.

crttrm QMgrName QueueName
Creates a trigger monitor service for a queue manager.

QueueName
The name of the MQSeries queue to be used by the trigger
monitor service. See the runmqtrm command in the MQSeries
System Administration book for more information.

crtchi QMgrName InitQName
Creates a channel initiator service for a queue manager.

InitQName
Name of the MQSeries initiation queue to be used by the
channel initiator. See the runmqchi command in the MQSeries
System Administration book for more information.

status QMgrName | all
The parameter for status is optional.

If no parameter is supplied:
Displays the status of the MQSeries service.

If a QMgrName is supplied:
Displays the status of the named queue manager service.

If the parameter all is supplied:
Displays the status of all services.

cstmig filename
Imports definitions of custom services.

amqmdain loads custom services from a comma–separated value
(CSV) configuration file. Note that amqmdain must be executed to
store the custom service parameters in the registry, add the key and
values in the correct place and to assign the appropriate security
permissions to the registry.

The format of an entry in the configuration file is:

Command Name, Start Command, End Command, Flags, Reserved

For example:
PubSub Broker, strmqbrk -p blue.queue.manager, endmqbrk -i

-m blue.queue.manager, SUFFIX|ROOT|STARTUP|SHUTDOWN|COMMAND, 1

regsec Ensures that the security permissions assigned to the MQSeries
registry keys are correct.

Custom services

44 MQSeries V5.2 Release Guide

Return codes
0 Command completed normally

−3 Failed to initialize COM library
−4 Failed to initialize MQSeries COM components
−5 Failed to create channel initiator
−6 Failed to create service
−7 Failed to configure service
−8 Invalid Port Type specified for crtlsr

Browsing the dead-letter header

You can browse the header information for messages on the dead-letter queue
with the MQSeries Explorer interface. The information is presented on the
MQDLH page of the Message Property Sheet. For a description of the header
information, and of the conditions under which the MQDLH page is
displayed, see the online help for the Message Property Sheet.

Guidelines for Windows 2000

This information applies only when you are running MQSeries V5.2 in a
Windows 2000 environment.

MQSeries for Windows NT and Windows 2000 V5.2 runs on either platform
but the operation of MQSeries security can be affected by differences between
Windows 2000 and Windows NT.

MQSeries security relies on calls to the operating system API for information
about user authorizations and group memberships. Some functions do not
behave identically on Windows 2000 and on Windows NT. This section
includes descriptions of how those differences might affect MQSeries security
when you are running MQSeries V5.2 in a Windows 2000 environment.

For further information about MQSeries security, refer to the MQSeries System
Administration book.

When you get a “group not found” error
This problem can arise because MQSeries loses access to the local mqm group
when Windows 2000 servers are promoted to, or demoted from, domain
controllers. The symptom is an error indicating the lack of a local mqm group,
for example:
> crtmqm qm0
AMQ8066: Local mqm group not found.

You should be aware that altering the state of a machine between server and
domain controller can affect the operation of MQSeries. This is because
MQSeries makes use of a locally defined mqm group. When a server is

Custom services

Chapter 2. New function in MQSeries for Windows NT and Windows 2000 V5.2 only 45

promoted to be a domain controller, the scope changes from local to domain
local. When the machine is demoted to server, all domain local groups are
removed. This means that changing a machine from server to domain
controller, and back to server causes access to a local mqm group to be lost.

To remedy this problem, recreate the local mqm group using the standard
Windows 2000 management tools. Because all group membership information
is lost, you must reinstate privileged MQSeries users in the newly created
local mqm group. If the machine is a domain member you must also add the
domain mqm group to the local mqm group to grant privileged domain
MQSeries user IDs the required level of authority.

When you have problems with MQSeries and domain controllers

Note: This section describes the problems that can arise with security settings
when Windows 2000 servers are promoted to domain controllers. This
section applies also when creating the default configuration fails under
Windows 2000.

During the promotion of Windows 2000 servers to domain controllers, you are
presented with the option to select a default or nondefault security setting
relating to user and group permissions. This option controls whether arbitrary
users are able to retrieve group memberships from the active directory.
Because MQSeries relies on group membership information to implement its
security policy, it is important that the user ID that is performing MQSeries
operations is able to determine the group memberships of other users.

When a domain is created using the default security option, it is possible for
the default user ID created by MQSeries during the installation process
(MUSR_MQADMIN) to obtain group memberships for other users as
required. The product then installs normally, including the creation of default
objects, and the queue manager is able to determine the access authority of
local and domain users if required.

When a domain is created using the nondefault security option, the user ID
created by MQSeries during the installation (MUSR_MQADMIN) is not
always able to determine the required group memberships. In this case, the
following information applies:

Windows 2000 domain with nondefault security permissions
When the MQSeries installation is performed by a local user, the local user
(MUSR_MQADMIN) created is able to retrieve the group membership
information of the installing user, and so installation can complete normally,
including the creation of default objects. However, note that the queue
manager will be unable to determine access authority of domain users (if
required).

Windows 2000

46 MQSeries V5.2 Release Guide

When the MQSeries installation is performed by a domain user, the local user
(MUSR_MQADMIN) created is unable to retrieve the group membership
information of the installing user. This prevents the creation of default objects,
and the resulting installation is incomplete. Additional steps are then required
to complete the installation.

You can use the Active Directory Delegation of Control Wizard to grant
permission to a nominated group to the property Read group membership.
Specifically, it can be used to allow Domain mqm group members permission
to read group membership information of an arbitrary user.

To allow MQSeries to retrieve group membership information for an arbitrary
domain user, MQSeries must be configured to run under a suitably authorized
domain user. This is because local users on servers in a domain cannot be
given rights to access objects in Active Directory on the domain controller. The
domain user configured for MQSeries should belong to the Domain mqm
group.

In summary, for MQSeries on a Windows 2000 domain with the domain
controller created using the nondefault user and group permission setting:
v Active Directory at the domain controller must be configured to allow

group memberships to be read.
v MQSeries Services (COM server) must be configured to run under a

domain user.

Allowing Domain mqm group members to read group membership
This section tells you how to use the Active Directory Wizard to allow
Domain mqm group members to read group membership information for an
arbitrary user.

In Active Directory Users and Computers, right–click the domain name, for
example mqdev.hursley.ibm.com:
1. Click Delegate Control, then click Next.
2. Click Groups and Users:

a. Click Add.
b. Highlight Domain mqm and click Add.

3. Click OK.
4. Highlight the Domain mqm selection and click Next.
5. Select the Create a custom task to delegate check box and click Next.
6. Check Only the following objects in the folder and then search under

object types for User objects (the list is alphabetical, so go to the last one).
7. Check User Objects and click Next.
8. Check Property-specific and then search down to:

Windows 2000

Chapter 2. New function in MQSeries for Windows NT and Windows 2000 V5.2 only 47

Read Group Membership
Read groupMembershipSAM

(the list is sorted alphabetically on the second word). Select both of these
check boxes, then click Next.

9. Click Finish.

Configuring MQSeries Services to run under a domain user
You can change the user account under which MQSeries Services runs to be
other than the default MUSR_MQADMIN. To do this, first create the new
domain user account that you wish to use. Then, on each MQSeries server
running MQSeries V5.2, use the following command to configure the
MQSeries Services to run under the user ID you require, and also to allocate
the correct security rights and group memberships to this user account:

AMQMSRVN -regserver -user [domain]\[userid] - password [password]

Note that checking Password never expires when you create a user ID for use
by MQSeries Services will prevent the need to reconfigure the services owing
to password expiry.

When MQSeries appears to halt when reporting an error
Windows 2000 can inherit permissions differently from Windows NT. This
might cause MQSeries to lose write access to queue manager error logs,
depending on the access rights that have been allocated to the parent
directory into which MQSeries is installed. To remedy this problem, ensure
that all appropriate users of the product have write access to the queue
manager error directories.

When Default Configuration gives errors
For default configuration to work correctly, set up the computer name and
DNS domain in the following manner:
1. Right–click the My Computer icon.
2. Click Properties.
3. Click the Network Identification tab on the System Properties panel.
4. Click Properties and type the computer name.
5. Click More and type the DNS domain name.
6. Click OK to retain the updates.

When you have problems with a Multilanguage system
This section tells you what to do if you get:
v Some English messages when using MQSeries on a Windows 2000

Multilanguage system
v ?????? on the installation panels when installing MQSeries on a Windows

2000 DBCS Multilanguage system

Windows 2000

48 MQSeries V5.2 Release Guide

To install and use MQSeries on a Windows 2000 Multilanguage system, set up
the local and system locale values in the following manner:
1. Select the Control Panel.
2. Click Regional Options.
3. On the Regional Options panel, update both Your locale and the setting

for the required language.
4. Click Set default and set the System locale to the required language.
5. Click Apply.
6. Reboot the system.

MQSeries should now install and run correctly.

Applying security template files
Windows 2000 supports text-based security template files which you can use
to apply uniform security settings to one or more computers with the Security
Configuration and Analysis MMC snap-in. In particular, Windows 2000
supplies several templates that include a range of security settings with the
aim of providing specific levels of security; these include compatible, basic,
secure, and highly-secure.

Be aware that applying one of these templates might affect the security
settings applied to MQSeries files and directories. If you want to use the
highly-secure template, configure your machine before you install MQSeries. If
you apply the highly-secure template to a machine on which MQSeries is
already installed, all the permissions you have specifically set on the
MQSeries files and directories are removed. This means that you lose
Administrator and mqm group access and, when applicable, Everyone group
access from the error directories.

Note
Refer to the MQSeries Web site for the latest Frequently Asked Questions
(FAQs).

Windows 2000

Chapter 2. New function in MQSeries for Windows NT and Windows 2000 V5.2 only 49

Windows 2000

50 MQSeries V5.2 Release Guide

Chapter 3. New function in V5.2 UNIX® systems only

This chapter introduces the new function that applies to the following
products:
v MQSeries for AIX, V5.2
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2
v MQSeries for Sun Solaris, V5.2

The general discussion that introduces the section “UNIX signal handling on
MQSeries V5.2 products” on page 52 also applies to the MQSeries for AS/400,
V5.2 product.

For more information on the functions that apply to your product, refer to the
sections:
v “New function for UNIX systems”
v “UNIX signal handling on MQSeries V5.2 products” on page 52
v “New function for Sun Solaris only” on page 57
v “New function for AIX only” on page 78

New function for UNIX systems

This section describes the changes in MQSeries V5.2 that apply to more than
one of the UNIX products. “Threaded applications” applies to all the UNIX
products. “Support for Websphere as an XA coordinator” on page 52 applies
to the AIX, HP-UX, and Sun Solaris products only.

The section “UNIX signal handling on MQSeries V5.2 products” on page 52
applies to all the UNIX products.

Threaded applications
If you are writing multithreaded MQSeries applications that create new
processes, note that calls to create a new process using the fork system call
must be followed by an exec system call to execute a program. MQSeries V5.2
does not support the use of the fork system call unless it is followed by an
exec system call.

You can refer to the MQSeries Application Programming Guide for more
information about writing multithreaded MQSeries applications. Note,
however, that this book does not discuss using the fork system call to create a
new process.

© Copyright IBM Corp. 1999, 2000 51

Support for Websphere as an XA coordinator
MQSeries V5.2 supports Websphere as a transaction coordinator in the
following environments: AIX, HP-UX, and Sun Solaris. Refer to the Websphere
documentation for more information on connecting Websphere to MQSeries.

For more information about the MQSeries application adaptor, and about how
to write Component Broker applications please see the WebSphere™ Application
Server Enterprise Edition Component Broker MQSeries Application Adaptor
Development Guide SC09–4444.

UNIX signal handling on MQSeries V5.2 products

Note
This section is a complete replacement for the section “UNIX Signal
handling on MQSeries Version 5 products” in the MQSeries Application
Programming Guide.

Changes have been made to the following:
v The description of the “libmqm_r library” on page 53 in this book, in

particular the behavior for SIGALRM. Furthermore, MQSeries V5.2
does not need to run clean–up code in the event of abnormal
termination.

v The handling of a synchronous signal in “Unthreaded applications” on
page 54 .

v The section “Threaded applications” on page 54.
v The section “Fastpath (trusted) applications” on page 55.

In general, UNIX and AS/400 systems have moved from a nonthreaded
(process) environment to a multithreaded environment. In the nonthreaded
environment, some functions could be implemented only by using signals,
though most applications did not need to be aware of signals and signal
handling. In the multithreaded environment, thread-based primitives support
some of the functions that used to be implemented in the nonthreaded
environments using signals. In many instances, signals and signal handling,
although supported, do not fit well into the multithreaded environment and
various restrictions exist. This can be particularly problematic when you are
integrating application code with different middleware libraries (running as
part of the application) in a multithreaded environment where each is trying
to handle signals. The traditional approach of saving and restoring signal
handlers (defined per process), which worked when there was only one
thread of execution within a process, does not work in a multithreaded

All UNIX systems

52 MQSeries V5.2 Release Guide

environment: many threads of execution could be trying to save and restore a
process-wide resource, with unpredictable results.

For a standard application, MQSeries supports both nonthreaded and
threaded application environments on AIX, AS/400, HP-UX, and Linux.

All MQSeries applications in the Sun Solaris environment are threaded.
MQSeries for Sun Solaris V2.2 supported only single-threaded applications
(though there was no way to enforce this) and, because there was only one
thread of execution, was able to make use of the traditional signal handling
functions. In MQSeries for Sun Solaris, V5.0, and subsequent releases, true
multithreaded applications are supported and so the signal behavior has
changed.

The library libmqm is provided for migration of nonthreaded applications
from Version 2 of MQSeries for AIX or MQSeries for HP-UX to Version 5. The
goal of this library is to maintain the Version 2 behavior (including signals)
for nonthreaded applications. Within an application in this environment there
is only one thread of execution, which means that signal handlers can be
saved and restored safely across MQSeries API calls (as can any middleware
library that is part of the application). Therefore, if you have an application
suite on V2 of MQSeries for AIX or MQSeries for HP-UX that uses signals,
and you do not want to move to the threaded environment, the suite should
run unchanged on V5 using the nonthreaded library, libmqm.

The library libmqm_r is provided for threaded applications on MQSeries for
AIX, MQSeries for HP-UX, and MQSeries for Linux. On AS/400 libmqm_r is
provided as a service program. However, the behavior, particularly for signals,
is different:
v As in the nonthreaded environment, MQSeries still establishes signal

handlers for synchronous terminating signals (SIGBUS, SIGFPE, SIGSEGV,
SIGILL).

v In the threaded environment MQSeries does not need to use the SIGALRM
signal as it does in the nonthreaded environment.

Note: Some system functions may use signals internally (for example,
SIGALRM in a nonthreaded environment). For a particular operating
system, some of these functions may have thread-safe equivalents or
it may be stated that they are not multithread safe. Any
non-thread-safe operating system call should be replaced if moving
to a multithreaded environment.

UNIX signal handling

Chapter 3. New function in V5.2 UNIX® systems only 53

Unthreaded applications
Each MQI function sets up its own signal handler for the signals:

SIGALRM
SIGBUS
SIGFPE
SIGSEGV
SIGILL

Users’ handlers for these are replaced for the duration of the MQI function
call. Other signals can be caught in the normal way by user-written handlers.
If you do not install a handler, the default actions (for example, ignore, core
dump, or exit) are left in place.

Following the handling of a synchronous signal (SIGSEGV, SIGBUS, SIGFPE,
SIGILL) by MQSeries it will attempt to pass the signal on to any signal
handler registered prior to making the MQI function call.

Note: On Sun Solaris all applications are threaded even if they use a single
thread.

Threaded applications
A thread is considered to be connected to MQSeries from MQCONN (or
MQCONNX) until MQDISC.

Synchronous signals
Synchronous signals arise in a specific thread. UNIX safely allows the setting
up of a signal handler for such signals for the whole process. However,
MQSeries sets up its own handler for the following signals, in the application
process, while any thread is connected to MQSeries:

SIGBUS
SIGFPE
SIGSEGV
SIGILL

If you are writing multithreaded applications, you should note that there is
only one process-wide signal handler for each signal. When MQSeries sets up
its own synchronous signal handlers it saves any previously registered
handlers for each signal. Following the handling by MQSeries of one of the
signals listed above, MQSeries attempts to call the signal handler that was in
effect at the time of the first MQSeries connection within the process. The
previously registered handlers are restored when all application threads have
disconnected from MQSeries.

UNIX signal handling

54 MQSeries V5.2 Release Guide

Because signal handlers are saved and restored by MQSeries, application
threads ideally should not establish signal handlers for these signals while
there is any possibility that another thread of the same process is also
connected to MQSeries.

Note: When an application, or a middleware library (running as part of an
application), does establish a signal handler while a thread is connected
to MQSeries, the application’s signal handler must call the
corresponding MQSeries handler during the processing of that signal.

When establishing and restoring signal handlers, the general principle is that
the last signal handler to be saved must be the first to be restored:
v When an application establishes a signal handler after connecting to

MQSeries, the previous signal handler must be restored before the
application disconnects from MQSeries.

v When an application establishes a signal handler before connecting to
MQSeries, the application must disconnect from MQSeries before restoring
its signal handler.

Note: Failure to observe the general principle that the last signal handler to
be saved must be the first to be restored can result in unexpected signal
handling in the application and, potentially, the loss of signals by the
application.

Asynchronous signals
MQSeries does not make use of any asynchronous signals in threaded
applications unless they are client applications.

Threaded client applications - additional considerations
MQSeries handles the following signals during I/O to a server. These signals
are defined by the communications stack. The application should not establish
a signal handler for these signals while a thread is connected to a queue
manager:
SIGPIPE

(for TCP/IP)

Fastpath (trusted) applications
Fastpath applications run in the same process as MQSeries and so are running
in the multithreaded environment. In this environment MQSeries handles the
synchronous signals SIGSEGV, SIGBUS, SIGFPE, and SIGILL. All other signals
must not be delivered to the Fastpath application whilst it is connected to
MQSeries. Instead they must be blocked or handled by the application. If a
Fastpath application intercepts such an event the Queue Manager must be
stopped and restarted, or it may be left in an undefined state. For a full list of
the restrictions for Fastpath applications under MQCONNX see “Connecting
to a queue manager using the MQCONNX call”

UNIX signal handling

Chapter 3. New function in V5.2 UNIX® systems only 55

MQI function calls within signal handlers
While you are in a signal handler, you cannot call an MQI function. If you call
an MQI function, while another MQI function is active,
MQRC_CALL_IN_PROGRESS is returned. If you call an MQI function, while
no other MQI function is active, it is likely to fail because of the operating
system restrictions on which calls can be issued from within a handler.

In the case of C++ destructor methods, which may be called automatically
during program exit, you may not be able to stop the MQI functions from
being called. Therefore, ignore any errors about
MQRC_CALL_IN_PROGRESS. If a signal handler calls exit(), MQSeries backs
out uncommitted messages in syncpoint as normal and closes any open
queues.

Signals during MQI calls
MQI functions do not return the code EINTR or any equivalent to application
programs. If a signal occurs during an MQI call, and the handler calls ‘return’,
the call continues to run as if the signal had not happened. In particular,
MQGET cannot be interrupted by a signal to return control immediately to
the application. If you want to break out of an MQGET, set the queue to
GET_DISABLED; alternatively, use a loop around a call to MQGET with a
finite time expiry (MQGMO_WAIT with gmo.WaitInterval set), and use your
signal handler (in a nonthreaded environment) or equivalent function in a
threaded environment to set a flag which breaks the loop.

In the AIX environment, MQSeries requires that system calls interrupted by
signals are restarted. You must establish the signal handler with sigaction(2)
and set the SA_RESTART flag in the sa_flags field of the new action structure.
The default behavior is that calls are not restarted (the SA_RESTART flag is
not set).

User exits and installable services
User exits and installable services that run as part of an MQSeries process in a
multithreaded environment have the same restrictions as for Fastpath
applications. They should be considered as permanently connected to
MQSeries and so not use signals or non-threadsafe operating system calls.

UNIX signal handling

56 MQSeries V5.2 Release Guide

New function for Sun Solaris only

This section introduces the new function that applies only to MQSeries for
Sun Solaris, V5.2.

Sun Workshop C++ Compiler 5.0 and 6.0
MQSeries V5.2 supports Version 5.0 and Version 4.2 of the Sun Workshop C++
Compiler and the Forte C++ 6 (Sun WorkShop 6 C++) compiler. Refer to the
MQSeries Using C++ book for information about compiling and linking
programs with the compiler you are using. The instructions for the Forte C++
6 (Sun WorkShop 6 C++) compiler are the same as for Version 5.0 of the Sun
Workshop C++ Compiler.

Communications support extended to include SNAP–IX
This section gives an example of how to set up communication links from
MQSeries for Sun Solaris using SNAP–IX V6.2 or later. See Chapter 18 in the
MQSeries Intercommunication book for a description of the existing support for
SunLink Version 9.1. Note the following with regard to that Chapter:
v The section “Configuration parameters for an LU 6.2 connection” applies

only to SunLink Version 9.1.
v The section “Establishing a connection using SunLink Version 9.1” is

unchanged.
v The sections “Configuration parameters for an LU 6.2 connection using

SNAP–IX” on page 58 and “Establishing a session using SNAP–IX” on
page 63 are added.

v The section “Establishing a TCP connection” is unchanged.
v In the section “MQSeries for Sun Solaris configuration”, the existing

“MQSeries for Sun Solaris sender-channel definitions using SNA” applies
only to SunLink Version 9.1.

v “MQSeries for Sun Solaris sender-channel definitions using SNAP-IX SNA”
on page 77 is added to the section “MQSeries for Sun Solaris
configuration”.

You determine the MQSeries library loaded to support SNA with the
MQCommLibrary parameter in the qm.ini file. With MQSeries for Sun Solaris,
V5.2, the LU62 stanza applies. MQCommLibrary is the only attribute that can be
specified:

MQCommLibrary=amqcc62a|amqcc62s
This attribute specifies the MQSeries library loaded to support SNA
for MQSeries for Sun Solaris, V5.2.

SNAP–IX support is provided if amqcc62a is loaded. This is the
default if this attribute is not specified.

SunLink Version 9.1 support is provided if amqcc62s is loaded.

Sun Solaris

Chapter 3. New function in V5.2 UNIX® systems only 57

Refer to the MQSeries System Administration book for a full description of the
LU62 stanza in the qm.ini file.

Configuration parameters for an LU 6.2 connection using SNAP–IX
Table 2 presents a worksheet listing all the parameters needed to set up
communication from Sun Solaris using SNAP–IX to one of the other MQSeries
platforms. The worksheet shows examples of the parameters, which have been
tested in a working environment, and leaves space for you to fill in your own
values. An explanation of the parameter names follows the worksheet. Use the
worksheet in this chapter in conjunction with the worksheet in the chapter of
the MQSeries Intercommunication book for the platform to which you are
connecting.

Configuration worksheet: Use this worksheet to record the values you use
for your configuration. Where numbers appear in the Reference column they
indicate that the value must match that in the appropriate worksheet
elsewhere in the MQSeries Intercommunication book. The examples that follow
in this chapter refer back to the values in the ID column. The entries in the
Parameter Name column are explained in “Explanation of terms” on page 61.

Table 2. Configuration worksheet for SNAP–IX

ID Parameter Name Ref. Example User Value

Parameters for local node

�1� Configuration file name sna_node.cfg

�2� Control point name SOLARXPU

�3� Node ID to send 05D 23456

�4� Network name NETID

�5� Local APPC LU SOLARXLU

�6� APPC mode #INTER

�7� Invokable TP MQSERIES

�8� Local MAC address 08002071CC8A

�9� Port name MQPORT

�10� Command path /opt/mqm/bin/amqcrs6a

�11� Local queue manager SOLARIS

Connection to an OS/2® system

The values in this section of the table must match those used in the Table for OS/2 and LU6.2, as indicated.

�12� Link station name OS2CONN

�13� Network name �2� NETID

�14� CP name �3� OS2PU

�15� Remote LU �6� OS2LU

�16� Application TP �8� MQSERIES

�17� Mode name �17� #INTER

Sun Solaris

58 MQSeries V5.2 Release Guide

Table 2. Configuration worksheet for SNAP–IX (continued)

ID Parameter Name Ref. Example User Value

�18� CPI-C symbolic destination name OS2CPIC

�19� Remote network address �10� 10005AFC5D83

�20� Node ID to receive �4� 05D 12345

Connection to a Windows NT or Windows 2000 system

The values in this section of the table must match those used in the Table for Windows NT and LU6.2, as indicated.

�12� Link station name NTCONN

�13� Network name �2� NETID

�14� CP name �3� WINNTCP

�15� Remote LU �5� WINNTLU

�16� Application TP �7� MQSERIES

�17� Mode name �17� #INTER

�18� CPI-C symbolic destination name NTCPIC

�19� Remote network address �9� 08005AA5FAB9

�20� Node ID to receive �4� 05D 30F65

Connection to an AIX system

The values in this section of the table must match those used in the Table for AIX and LU6.2, as indicated.

�12� Link station name AIXCONN

�13� Network name �1� NETID

�14� CP name �2� AIXPU

�15� Remote LU �4� AIXLU

�16� Application TP �6� MQSERIES

�17� Mode name �14� #INTER

�18� CPI-C symbolic destination name AIXCPIC

�19� Remote network address �8� 123456789012

�20� Node ID to receive �3� 071 23456

Connection to an AT&T GIS UNIX system

The values in this section of the table must match those used in the table the Table for AT&T GIS UNIX and LU6.2,
as indicated.

�12� Link station name GISCONN

�13� Network name �2� NETID

�14� CP name �3� GISPU

�15� Remote LU GISLU

�16� Application TP �5� MQSERIES

�17� Mode name �7� #INTER

�18� CPI-C symbolic destination name GISCPIC

�19� Remote network address �8� 10007038E86B

Sun Solaris and LU 6.2

Chapter 3. New function in V5.2 UNIX® systems only 59

Table 2. Configuration worksheet for SNAP–IX (continued)

ID Parameter Name Ref. Example User Value

�20� Node ID to receive �9� 03E 00018

Connection to an HP—UX system

The values in this section of the table must match those used in the Table for HP—UX and LU6.2, as indicated.

�12� Link station name HPUXCONN

�13� Network name �2� NETID

�14� CP name �3� HPUXPU

�15� Remote LU �7� HPUXLU

�16� Application TP �8� MQSERIES

�17� Mode name �17� #INTER

�18� CPI-C symbolic destination name HPUXCPIC

�19� Remote network address �5� 10005FC5D83

�20� node ID to receive �6� 05D 54321

Connection to an AS/400 system

The values in this section of the table must match those used in the Table for AS/400 and LU6.2, as indicated.

�12� Link station name AS4CONN

�13� Network name �1� NETID

�14� CP name �2� AS400PU

�15� Remote LU �3� AS400LU

�16� Application TP �8� MQSERIES

�17� Mode name �17� #INTER

�18� CPI-C symbolic destination name AS4CPIC

�19� Remote network address �4� 10005A5962EF

Connection to an OS/390 or MVS/ESA™ system without CICS®

The values in this section of the table must match those used in the Table for OS/390 and LU6.2, as indicated.

�12� Link station name MVSCONN

�13� Network name �2� NETID

�14� CP name �3� MVSPU

�15� Remote LU �4� MVSLU

�16� Application TP �7� MQSERIES

�17� Mode name �10� #INTER

�18� CPI-C symbolic destination name MVSCPIC

�19� Remote network address �8� 400074511092

Connection to a VSE/ESA™ system

The values in this section of the table must match those used in the Table for VSE/ESA and LU6.2, as indicated.

�12� Link station name VSECONN

Sun Solaris and LU 6.2

60 MQSeries V5.2 Release Guide

Table 2. Configuration worksheet for SNAP–IX (continued)

ID Parameter Name Ref. Example User Value

�13� Network name �1� NETID

�14� CP name �2� VSEPU

�15� Remote LU �3� VSELU

�16� Application TP �4� MQ01 MQ01

�17� Mode name #INTER

�18� CPI-C symbolic destination name VSECPIC

�19� Remote network address �5� 400074511092

Explanation of terms

�1� Configuration file name
This is the unique name of the SNAP–IX configuration file. The
default for this name is sna_node.cfg.

Although it is possible to edit this file it is strongly recommended
that configuration is done using xsnadmin.

�2� Control point name
This is the unique Control point name for this workstation. In the
SNA network, the Control point is an addressable location (PU type
2.1). Your network administrator will assign this to you.

�3� Node ID to send
This is the unique ID of this workstation. On other platforms this is
often referred to as the Exchange ID or XID. Your network
administrator will assign this ID for you.

�4� Network name
This is the unique ID of the network to which you are connected. It is
an alphanumeric value and can be 1-8 characters long. The network
name works with the Control point name to uniquely identify a
system. Your network administrator will tell you the value.

�5� Local APPC LU
An LU manages the exchange of data between transactions. The local
APPC LU name is the name of the LU on your system. Your network
administrator will assign this to you.

�6� APPC mode
This is the name given to the set of parameters that control the APPC
conversation. This name must be defined at each partner system. Your
network administrator will assign this to you.

�7� Invokable TP
MQSeries applications trying to converse with this workstation will
specify a symbolic name for the program to be run at the receiving

Sun Solaris and LU 6.2

Chapter 3. New function in V5.2 UNIX® systems only 61

end. This will have been defined on the channel definition at the
sender. For simplicity, wherever possible use a transaction program
name of MQSERIES, or in the case of a connection to VSE/ESA,
where the length is limited to 4 bytes, use MQTP.

See the MQSeries Intercommunication book for more information.

�8� Local MAC address
This is the network address of the token-ring card. The address to be
specified is found in the ether value displayed in response to the
ifconfig tr0 command issued at a root level of authority. (Tr0 is the
name of the machine’s token-ring interface.) If you do not have the
necessary level of authority, your Sun Solaris system administrator can
tell you the value.

�9� Port name
This is a meaningful symbolic name that is used to associate the
definitions with a network interface (in this case, a Token-Ring
adapter). A separate Port must be defined for each physical device
attached to the workstation.

�10� Full path to executable
This is the path and name of the script file that invokes the MQSeries
program to run.

�11� Local queue manager
This is the name of the queue manager on your local system.

�10� Link station name
This is a meaningful symbolic name by which the connection to a
peer or host node is known. It defines a logical path to the remote
system. Its name is used only inside SNAP–IX and is specified by
you. The connection must be associated with an existing Link and
owned by one local node. You must define one connection for each
partner or host system.

�18� CPI-C symbolic destination name
This is a name given to the definition of a partner node. You choose
the name. It need be unique only on this machine. Later you can use
this name in the MQSeries sender channel definition.

�20� Node ID to receive
This is the unique ID of the partner workstation with which you will
be communicating. On other platforms this is often referred to as the
Exchange ID or XID. For a connection to a host system any values
except 000 FFFFF and FFF FFFFF may be specified. Your network
administrator will assign this ID for you.

Sun Solaris and LU 6.2

62 MQSeries V5.2 Release Guide

Establishing a session using SNAP–IX
The following information guides you through the tasks you must perform to
create the SNA infrastructure that MQSeries requires. This example creates the
definitions for a partner node and LU on OS/2.

Use sna start followed by xsnaadmin to type the SNAP–IX configuration
panels. You need root authority to use xsnaadmin.

SNAP–IX configuration: SNAP–IX configuration involves the following
steps:
1. Defining a local node
2. Adding a Token Ring Port
3. Defining a local LU

The SNAP–IX main menu, from which you start, is shown here:

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 63

Defining a local node:

1. From the SNAP–IX main menu, click the Services pull-down:

2. Click Configure node parameters. The following panel is displayed:

3. Complete the Control point name with the values Network name (�4�)
and Control point name (�2�).

4. Type the Control point name (�2�) in the Control point alias field.
5. Type the Node ID (�3�).
6. Click End node.
7. Click OK.

A default independent local LU is defined.

Using SNAP–IX

64 MQSeries V5.2 Release Guide

Adding a Token Ring Port:

1. From the main SNAP–IX menu, click Connectivity and dependent LUs.
2. Click Add. The following panel is displayed:

3. Click Token Ring Card and click OK. The following panel is displayed:

4. Type the SNA port name (�9�).
5. Type a Description and click OK to take the default values.

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 65

Defining a local LU:

1. From the main SNAP–IX menu, click Independent local LUs.
2. Click Add. The following panel is displayed:

3. Type the LU name (�5�) and click OK.

APPC configuration: APPC configuration involves the following steps:
1. Defining a remote node
2. Defining a partner LU
3. Defining a link station
4. Defining a mode
5. Adding CPI-C information
6. Adding a TP definition

Defining a remote node:

1. From the main SNAP–IX menu, click Remote systems.
2. Click Add. The following panel is displayed:

3. Select the Define remote node check box and click OK. The following
panel is displayed:

Using SNAP–IX

66 MQSeries V5.2 Release Guide

4. Type the Node’s SNA network name (�13�) and a Description.
5. Click OK.
6. A default partner LU with the same name is generated and a message is

displayed.
7. Click OK.

Defining a partner LU:

1. From the main SNAP–IX menu, click Remote systems and click the
remote node.

2. Click Add. The following panel is displayed:

3. Select theDefine partner LU on node node name check box.
4. Click OK. The following panel is displayed:

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 67

5. Type the partner LU name (�15�) and click OK.

Defining a link station:

1. From the main SNAP–IX menu, click Connectivity and dependent LUs.
2. Click the MQPORT port.
3. Click Add. The following panel is displayed:

4. Select the Add link station to port MQPORT check box.
5. Click OK. The following panel is displayed:

Using SNAP–IX

68 MQSeries V5.2 Release Guide

6. Type the Name of the link station (�12�).
7. Set the value of Activation to “On demand”.
8. Select the Independent only check box.
9. Click Remote node and select the value of the remote node (�14�).

10. Click OK.
11. Set the value of Remote node type to “End or LEN node”.
12. Type the value for MAC address (�19�) and click Advanced. The

following panel is displayed:

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 69

13. Select the Request CP-CP sessions. check box
14. Select the Reactivate link station after failure. check box
15. Click OK to exit the Advanced panel.
16. Click OK again.

Defining a mode:

1. From the SNAP–IX main menu, click the Services pull-down: The
following panel is displayed:

2. Click APPC. The following panel is displayed:

Using SNAP–IX

70 MQSeries V5.2 Release Guide

3. Click Modes. The following panel is displayed:

4. Click Add. The following panel is displayed:

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 71

5. Type the Name to be given to the mode (�17�).
6. Set the values of Initial session limit to 8, Min con. winner sessions to 4,

and Auto-activated sessions to 0.
7. Click OK.
8. Click Done.

Adding CPI-C information:

1. From the SNAP–IX main menu, click the Services pull-down:

Using SNAP–IX

72 MQSeries V5.2 Release Guide

2. Click APPC. The following panel is displayed:

3. Click CPI-C. The following panel is displayed:

4. Click Add. The following panel is displayed:

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 73

5. Type the Name (�18�). Select the Application TP check box and type the
value (�16�). Select the Use PLU alias check box and type the name (�15�).
Type the Mode name (�17�).

6. Click OK.

Using SNAP–IX

74 MQSeries V5.2 Release Guide

Adding a TP definition using SNAP–IX Release 6: To add a TP definition:
1. Click the Services pull-down and click APPC as for CPI-C information.
2. Click Transaction Programs. The following panel is displayed:

3. Click Add. The following panel is displayed:

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 75

4. Type TP name (�7�) in the Application TP field.
5. Clear the Queue incoming Allocates check box.
6. Type Full path to executable (�10�).
7. Type -m Local queue manager (�11�) in the Arguments field.
8. Type mqm in the User ID and Group ID fields.
9. Type environment variables APPCLLU=local LU (�5�) and

APPCTPN=Invokable TP (�7�) separated by the pipe character in the
Environment field.

10. Click OK to save your definition.

Using SNAP–IX

76 MQSeries V5.2 Release Guide

SNAP–IX operation: The SNAP–IX control daemon is started with the sna
start command. Depending on the options selected at installation, it may
already be running.

The xsnaadmin utility controls SNAP–IX resources.

Logging and tracing are controlled from here. Log and trace files can be found
in the /var/opt/sna directory. The logging files sna.aud and sna.err can be
read using a standard editor such as vi.

In order to read the trace files sna1.trc and sna2.trc they must first be
formatted by running the command snatrcfmt -f sna1.trc -o sna1 which
produces a sna1.dmp file that can be read using a normal editor.

The configuration file itself is editable but this is not a recommended method
of configuring SNAP–IX.

The APPCLLU environment variables must be set before starting a sender
channel from the Sun Solaris system. The command can be either entered
interactively or added to the logon profile. Depending on the level of
BOURNE shell or KORN shell program being used, the command will be:
export APPCLLU=SOLARXLU �5� newer level

or
APPCLLU=SOLARXLU �5� older level
export

What next?: The connection is now established. You are ready to complete
the configuration. Go to “MQSeries for Sun Solaris configuration” in Chapter
18 of the MQSeries Intercommunication book.

MQSeries for Sun Solaris sender-channel definitions using SNAP-IX SNA
def ql (OS2) + �F�

usage(xmitq) +
replace

def qr (OS2.REMOTEQ) + �D�
rname(OS2.LOCALQ) + �E�
rqmname(OS2) + �C�
xmitq(OS2) + �F�
replace

def chl (SOLARIS.OS2.SNA) chltype(sdr) + �G�
trptype(lu62) +
conname('OS2CPIC') + �14�
xmitq(OS2) + �F�
replace

Using SNAP–IX

Chapter 3. New function in V5.2 UNIX® systems only 77

New function for AIX only

This section introduces the new function that applies only to MQSeries for
AIX, V5.2.

Support for draft 10 threads
Version 5.2 of MQSeries for AIX uses the POSIX standard threading library
(which was not available on AIX V4.2) to match the implementation on other
UNIX platforms. Existing MQSeries appplications built on AIX 4.2 using the
draft 7 level of POSIX threads are not affected by this new implementation
and will continue to run unchanged. However, MQSeries exits and installable
services should be recompiled and relinked using the xlc_r compiler on AIX
4.3 to use the final level of the pthread standard definition (also known as the
draft 10 level). It is recommended that any new threaded applications on AIX
4.3 also be written to use this level of the pthreads standard.

Enhanced support for Communications Server for AIX V5
Communications Server for AIX V5 support has been enhanced to enable you
to use the graphical interface to configure transaction programs invokable by
MQSeries. This description should be read in conjunction with Chapter 14 of
the MQSeries Intercommunication book.

Note: MQSeries no longer supports Communications Server for AIX V4.

The section “Defining a transaction program” in Chapter 14 of the MQSeries
Intercommunication book refers to MQSeries versions earlier than V5.2. For
V5.2, you define a transaction program as follows:

From the main window, click Services, APPC, and Transaction programs ...
The following panel is displayed:

AIX

78 MQSeries V5.2 Release Guide

1. Type TP name (�6�) in the Application TP field.
2. Clear the Queue incoming Allocates check box.
3. Type the Full path to executable (�7�).
4. Type −m Local queue manager in the Arguments field.
5. Type mqm in the User ID and Group ID fields.
6. Enter environment variables APPCLLU=local LU (�4�) and

APPCTPN=Invokable TP (�6�) separated by the pipe character in the
Environment field.

7. Click OK.

Refer to “Explanation of terms” in Chapter 14 of the MQSeries
Intercommunication book for a description of the terms marked with a
reference number.

AIX

Chapter 3. New function in V5.2 UNIX® systems only 79

AIX

80 MQSeries V5.2 Release Guide

Chapter 4. New function in MQSeries for AS/400 V5.2 only

This chapter introduces the new function that applies only to MQSeries for
AS/400, V5.2. It contains these sections:
v “CL commands”
v “Exception handling” on page 82
v “Access to MQSeries objects” on page 83
v “Support for nonthreaded listener” on page 83

CL commands

This section describes the new ENDCCTJOB option to the ENDMQM (End
message queue manager) CL command. For other additions and modifications
to the CL commands, see:
v “RFRMQMAUT command for MQSeries for AS/400” on page 6
v “RCDMQMIMG command for MQSeries for AS/400” on page 22

ENDCCTJOB option to the ENDMQM (End message queue manager) CL
command

The ENDCCTJOB option is added to the ENDMQM CL command. The
function of this option is to quiesce the queue manager. The syntax of the
ENQMQM command is now:

66 ENDMQM MQMNAME(queue-manager-name)
MQMNAME(*ALL)

OPTION(*CNTRLD)

OPTION(*IMMED)
OPTION(*WAIT)
OPTION(*PREEMPT)

6

6
ENDCCTJOB(*NO)

ENDCCTJOB(*YES) TIMEOUT(1-3600)
69

The description of the parameters for the ENDCCTJOB option is:

*NO The queue manager or queue managers are ended. No further action
is taken.

*YES The following tasks are performed:
v Stop all channels (except receiver, client-connection and

cluster-receiver channels) defined for the queue manager.

© Copyright IBM Corp. 1999, 2000 81

v Record media images for all objects defined for the queue manager.
v End the queue manager.
v Terminate processes connected to the queue manager.
v Destroy all shared memory and semaphores used by the queue

manager.

Exception handling

This section describes exception handling in the MQSeries for AS/400, V5.2
product. It should be read in conjunction with the general discussion of
“UNIX signal handling on MQSeries V5.2 products” on page 52 in Chapter 3.
New function in V5.2 UNIX® systems only. For AS/400, the sections
“Unthreaded applications” and “Threaded applications” apply, rather than the
corresponding sections in Chapter 3. New function in V5.2 UNIX® systems
only.

MQSeries for AS/400 uses ILE/C condition and cancel handlers as its
exception processing mechanisms. Because of this, applications must not use
the ILE/C signal() API when connected to MQSeries. The signal() API is
implemented by ILE to handle ILE/C conditions as if they were signals, and
can interfere with the ILE/C condition handlers used by MQSeries.

Sigaction() and sigwait() are safe to use with MQSeries, because they do not
interact with ILE conditions at all. The ILE condition and cancel handler APIs
are also safe to use in all circumstances. These APIs, when used together, will
handle the same combination of exception conditions as signal().

Unthreaded applications
Each MQI function sets up ILE/C condition and cancel handlers for the
duration of the MQI function.

Threaded applications
This section describes how AS/400 handles exceptions for threaded
applications.

Synchronous signals
Synchronous signals arise as exceptions in a specific thread. AS/400 allows
ILE/C condition and cancel handlers to be set up to process exceptions for
each thread. MQSeries sets up its own exception handlers for the duration of
each MQI function.

Asynchronous signals
MQSeries does not make use of any asynchronous signals in threaded
applications. However, client applications might do so.

CL commands

82 MQSeries V5.2 Release Guide

Access to MQSeries objects

If you are an AS/400 user with *ALLOBJ authority, and your MQSeries
authorizations are controlled by the OAM, MQSeries V5.2 automatically
allows you access to all MQSeries objects through the MQI. It is no longer
necessary for you to edit the OAM authorization files to obtain the access you
require. See Chapter 5 in the MQSeries for AS/400 System Administration book
for more information about security considerations and the Object Authority
Manager (OAM).

See the OS/400 Security — Reference V4R4 SC41–5302 book for a complete
description of the *ALLOBJ authority.

Support for nonthreaded listener

With MQSeries V5.2 the STRMQMLSR command is changed to submit by
default a nonthreaded listener job called AMQCLMAA that starts each
channel as a separate job (AMQRMCLA). With V5.1 the STRMQMLSR
command submits a listener job RUNMQLSR and all channels started for that
listener run as threads within that listener.

You control whether listeners run threaded or nonthreaded with the
ThreadedListener parameter in the qm.ini file. This parameter is added to the
CHANNELS stanza:

ThreadedListener=No|Yes
This attribute controls whether listeners run threaded or nonthreaded.
The default is No.

Refer to the MQSeries for AS/400 System Administration book for more
information about the qm.ini file.

Nonthreaded listeners have the following advantages:
v They are more scalable than threaded listeners.
v They start nonthreaded channel jobs which run slightly more quickly than

threaded channels. This makes nonthreaded channels suitable for heavily
loaded batch processing environments.

v Nonthreaded channel exits do not need to be thread safe, which makes it
possible to write exit programs in languages that do not offer full support
for threading.

Threaded listeners have the following advantage:
v They start channels as threads which start more quickly than nonthreaded

channels. This makes them suitable for conversational applications where
channels are expected to start and end frequently.

Access to MQSeries objects

Chapter 4. New function in MQSeries for AS/400 V5.2 only 83

Nonthreaded listener

84 MQSeries V5.2 Release Guide

Appendix. Notices

This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make

© Copyright IBM Corp. 1999, 2000 85

improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Notices

86 MQSeries V5.2 Release Guide

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX AS/400 CICS
IBM IBMLink MQSeries
MVS/ESA OS/2 OS/390
OS/400 System/390 VSE/ESA
Websphere

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service
marks of others.

Notices

Appendix. Notices 87

88 MQSeries V5.2 Release Guide

Index

Special Characters
*ALLOBJ authority 83
+QMNAME+ 18

A
AIX 78
amqmdain command 42

definition and syntax 43
amqzfu service module 8
amqzfu0 service module 8
amqzfu1 service module 8
amqzfuma process for managing

authorization data 8
AS/400

exception handling 82
threaded applications 82
unthreaded applications 82

AS/400 command
ENDMQM 81
RCDMQMIMG 22
RFRMQMAUT 6
STRMQMLSR 83

authorization
authorization service 4
data 8
files 8
managed by amqzfuma

process 8
migrating 8
refreshing the OAM after

changing 4
storing data in files 8
Windows 2000 45
with *ALLOBJ authority 83

B
blank CONNAME 14

C
C++

ImqQueueManager class 3
Sun Workshop compiler

support 57
CacheType field 34
calls

detailed description
MQXCLWLN 24

channel, performance
improvement 10

channel exit
compatible receive exit 11
considerations for pipelining 10
reserving space in send exit 11

channel initiator
creating service with the

amqmdain command 43
channel naming convention 18
ChannelDefOffset field

MQWDR structure 37
clients, installing 9
CLUSRCVR channel definition

blank CONNAME 14
CLUSSDR channel definition

+QMNAME+ 18
cluster-receiver channel,

defining 14
cluster-sender channel, defining 18
ClusterRecOffset field

MQWCR structure 38
MQWDR structure 37
MQWQR structure 38

clusters
enhancements to clusters 14
using in V5.2 14
workload exits 22

CodedCharSetId fields in MQSeries
headers 3

command
amqmdain 42
AS/400

ENDMQM 81
RCDMQMIMG 22
RFRMQMAUT 6
STRMQMLSR 83

Create Channel 20
DEFINE CHANNEL 20
dspmqaut 8
rcdmqimg 21
REFRESH SECURITY 7

CommandLevel
MQCMD_LEVEL_520 2

Communications Server for AIX 78
communications support includes

SNAP–IX 57
CompCode parameter

MQXCLWLN call 25

configuration
parameters for an LU 6.2

connection 57
CONNAME

blank 14
generated 16
not specifying 14

Context field 33
Create Channel PCF command

changed parameter options 20
syntax 20

CurrentRecord parameter 24
custom services

configuring with the amqmdain
command 43

MQSeries Services snap-in 42

D
data types, detailed description

structure
MQWXP 26

dead-letter header, browsing 45
default configuration

creation fails under Windows
2000 46

errors under Windows 2000 48
for DHCP machines 41
launching 41

DEFINE CHANNEL command 14,
18

changed parameter options 20
syntax 20

defining a cluster-receiver
channel 14

defining a cluster-sender
channel 18

defining a transaction program on
AIX 78

DestinationArrayPtr field
MQWXP structure 33

DestinationChosen field
MQWXP structure 33

DestinationCount field
MQWXP structure 33

DHCP (Dynamic Host Configuration
Protocol) 14

migrating clusters to 17
repository queue manager

using 17

© Copyright IBM Corp. 1999, 2000 89

DHCP machines
default configuration 41

domain controllers
access considerations under

Windows 2000 45
problems under Windows

2000 46
dspmqaut command 8
Dynamic Host Configuration

Protocol (DHCP) 14
dynamic space allocation 22

E
encryption

in send exit 11
password 14

error reporting
halt under Windows 2000 48

example
establishing a session using

SNAP–IX 63
loading custom services from a

configuration file 43
replacing amqzfu module 8
send exits reserving space 12
setting up communication links

using SNAP–IX 57
specifying +QMNAME+ 18
specifying blank CONNAME 15

exception handling
AS/400 82

exec system call 51
ExitData field

MQWXP structure 31
ExitId field

MQWXP structure 28
ExitParms parameter

MQXCLWLN call 24
ExitReason field

MQWXP structure 28
ExitResponse field

MQWXP structure 29
ExitResponse2 field

MQWXP structure 30
ExitUserArea field

MQWXP structure 31

F
Fastpath UNIX applications 55
Feedback field

MQWXP structure 30
fork system call 51
formatting, rules and formatting

header, MQRFH2 2
function

MQXCLWLN 23

function (continued)
MQZ_INIT_AUTHORITY 4
MQZ_REFRESH_CACHE 4

G
group membership 4
group not found error

Windows 2000 45

H
header

CodedCharSetId field 3
dead-letter 45
MQCFSL 3
MQCFST 3
MQIIH 3
MQMD 3
MQRFH2 — Version-2 rules and

formatting 2
MQWCR 38
MQWDR 37
MQWQR 37
MQWXP 26

I
ImqQueueManager C++ class 3
IMS bridge, obtaining the transaction

state 3
installable services 4

in multithreaded
environment 56

installation
for Windows NT and Windows

2000 41
MQSeries clients 9
MQSeries Java support 9

J
Java, installing MQSeries support 9

L
Linux 2
listener

creating service with the
amqmdain command 43

non threaded 83
LU 6.2 connection

MQSeries for Sun Solaris 58

M
Message Property Sheet

browsing the dead-letter
header 45

Microsoft Transaction Server
(MTS) 41

migrating
clusters to DHCP 17
of authorization data 8

MQCCSI_INHERIT
value for CodedCharSetId

field 3
MQCLCT_* values 34
MQCMD_LEVEL_520

CommandLevel 2
MQCNO structure

Version field 3
MQCXP structure

ExitReason field 11
ExitSpace field 11

MQIIH structure
TranState field 3

mqm group, loss of access 45
MQRFH2 2
MQSeries Explorer

browsing the dead-letter
header 45

MQWXP_* values 27
MQWXP structure 26
MQXCC_* values 29
MQXCLWLN call 24
MQXCLWLN function 23
MQXCP_VERSION_5, of MQCXP

structure 11
MQXR_* values 28
MQXR_INIT, ExitReason value 11
MQXR_XMIT, ExitReason value 11
MQXR2_* values 30
MQXUA_* values 31
MQZ_INIT_AUTHORITY

function 4
MQZ_REFRESH_CACHE

function 4
MQZAS_VERSION_3 4
MsgBufferLength field

MQWXP structure 32
MsgBufferPtr field

MQWXP structure 32
MsgDescPtr field

MQWXP structure 31
MsgLength field

MQWXP structure 32
MTS 41
Multilanguage system

problems under Windows
2000 48

multithreaded UNIX
applications 51, 52

N
network address unknown 14
NextOffset parameter 24

90 MQSeries V5.2 Release Guide

NextRecord parameter 25
nonthreaded listener 83

O
Object Authority Manager

(OAM) 83
cache 4
store for authorization data 8

P
password encryption 14
PCF, Programmable Command

Format 7
performance

channel 10
enhancements 1
report 1

persistent messages, performance
enhancement 1

pipelining
in MCA message transfer 10
parameter in qm.ini file 10

port 65
Postcard application 42
Programmable Command Format

(PCF) 7

Q
QArrayPtr field

MQWXP structure 33
qm.ini

Channels stanza 10, 83
LU62 stanza 57
ServiceComponent stanza 8

QMgrName field
MQWXP structure 32

QName field
MQWXP structure 32

queue manager
configuring service with the

amqmdain command 43
name unknown 18
quiescing 81

Queue Manager Clusters, workload
management 22

R
rcdmqimg command 21
RCDMQMIMG AS/400

command 22
Reason parameter

MQXCLWLN call 25
recovery and restart

with the rcdmqimg
command 21

with the RCDMQMIMG AS/400
command 22

REFRESH SECURITY command 7
registry entries, ensuring correct

permissions with the amqmdain
command 43

repository queue manager on DHCP
system 17

Reserved field
MQWXP structure 30

restart, recovery
with the rcdmqimg

command 21
with the RCDMQMIMG AS/400

command 22
RFRMQMAUT AS/400 command 6
rules and formatting header,

MQRFH2 2

S
security considerations 4, 83

Windows 2000 45
security template files, applying

under Windows 2000 49
Services snap-in, Custom Services

folder 42
signal handling on UNIX

products 52
SNAP–IX

communications support 57
configuration parameters 58
establishing a session 63
explanation of terms 61
operation 77
sender-channel definitions 77

specifying +QMNAME+ 18
specifying a network address

CLUSRCVR channel
definition 14

specifying a repository queue
manager’s name

CLUSSDR channel definition 18
specifying blank CONNAME 16
stanza, in qm.ini file

Channels 10, 83
LU62 57
ServiceComponent 8

status, checking with the amqmdain
command 43

STRMQMLSR command 83
StrucId field

MQWXP structure 27
structure

MQCFSL 3
MQCFST 3
MQCNO 3
MQCXP 11
MQIIH 3

structure (continued)
MQMD 3
MQRFH2 2
MQWCR 38
MQWDR 37
MQWQR 37
MQWXP 26

Sun Solaris 57
SYSTEM.AUTH.DATA.QUEUE,

stores authorization data 8
system calls

exec 51
fork 51

T
TCP connection

establishing using SNAP–IX 57
threaded applications

AS/400 82
UNIX products 54

threads
draft 10 support 78
in UNIX applications 51
multiple 10

transaction coordinator
Websphere 52

transaction program
defining on AIX 78

transmission of messages
maximum transmission size 11
transmission buffer 11

trigger monitor
creating service with the

amqmdain command 43

U
UNIX products

Fastpath applications 55
installable services 56
MQI function calls 56
new function 51
signal handling 52
signals during MQI calls 56
threaded applications 54
unthreaded applications 54
user exits 56

unthreaded applications
AS/400 82
UNIX products 54

user exits, in multithreaded
environment 56

V
Version field

MQWXP structure 27

Index 91

W
Websphere as a transaction

coordinator 52

Windows 2000 45

access considerations 45
applying security template

files 49
creating the default configuration

fails 46
default configuration gives

errors 48
group not found error 45
halt when reporting an error 48
Multilanguage system

problems 48
problems with MQSeries and

domain controllers 46

worksheet

MQSeries for Sun Solaris
configuration 58

92 MQSeries V5.2 Release Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of
the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in
which the information is presented.

To make comments about the functions of IBM products or systems, talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1999, 2000 93

94 MQSeries V5.2 Release Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5761-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

Q
Se

rie
s®

M
Q

Se
ri

es
V

5.
2

R
el

ea
se

G
ui

de
Ve

rs
io

n
5.

2

	Contents
	About this book
	Who this book is for
	How to use this book
	Terms used in this book

	Chapter 1. New function in all V5.2 products
	Performance enhancements
	MQSeries for Linux
	Application programming enhancements
	MQCMD_LEVEL_520 CommandLevel value
	MQRFH2 — Version-2 rules and formatting header
	Processing of CodedCharSetId fields in MQSeries headers
	C++ support for MQCNO Version 2 and Version 3
	Applications using the IMS bridge

	Object Authority Manager (OAM) enhancements
	Refreshing the OAM after changing a user’s authorization
	MQZ_REFRESH_CACHE function
	RFRMQMAUT command for MQSeries for AS/400
	REFRESH SECURITY — Programmable Command Format (PCF)
	REFRESH SECURITY MQSC command

	Authorization data held on local queue
	Migration
	When you still want to store authorization data in files

	Installation
	Support for Java on MQSeries
	MQSeries clients

	Enhanced channel support
	Multiple thread support — pipelining
	Channel exit considerations

	Channel send exit programs — reserving space
	How you reserve space and use it
	What happens at the receiving end of the channel
	Multiple send exits
	MQCXP — Channel exit parameter structure

	User IDs with encrypted passwords

	Support for DHCP in queue manager clusters
	When you don’t know your queue manager’s network address
	Example of how to use this
	The cluster achieved by task 2
	What are the effects?
	Migration

	When you don’t know the repository queue manager’s name
	Example of how to use this
	The cluster achieved by task 2
	What are the effects?
	Migration

	MQSC command syntax changes
	Cluster-sender channel
	Cluster-receiver channel

	Programmable Command Formats (PCFs)

	Command rcdmqimg issues media recovery messages synchronously
	Optional parameters
	RCDMQMIMG command for MQSeries for AS/400

	Queue manager cluster workload exits
	Dynamic space allocation for workload data records
	Navigating cluster workload records
	MQXCLWLN - Cluster workload navigate records
	MQWXP — Cluster workload exit parameter structure
	MQWDR - Cluster workload destination-record structure
	MQWQR - Cluster workload queue-record structure
	MQWCR - Cluster workload cluster-record structure

	The MQSeries library

	Chapter 2. New function in MQSeries for Windows NT andWindows 2000 V5.2 only
	Microsoft® Transaction Server (MTS) support
	Installing MQSeries for Windows NT and Windows 2000
	Launching the Default Configuration
	Default Configuration for DHCP machines
	Postcard application enhancements

	Custom services
	New command: amqmdain (MQSeries services control)
	Purpose
	Syntax
	Keyword and parameter descriptions
	Return codes

	Browsing the dead-letter header
	Guidelines for Windows 2000
	When you get a “group not found” error
	When you have problems with MQSeries and domain controllers
	Windows 2000 domain with nondefault security permissions
	Allowing Domain mqm group members to read group membership
	Configuring MQSeries Services to run under a domain user

	When MQSeries appears to halt when reporting an error
	When Default Configuration gives errors
	When you have problems with a Multilanguage system
	Applying security template files

	Chapter 3. New function in V5.2 UNIX® systems only
	New function for UNIX systems
	Threaded applications
	Support for Websphere as an XA coordinator

	UNIX signal handling on MQSeries V5.2 products
	Unthreaded applications
	Threaded applications
	Synchronous signals
	Asynchronous signals
	Threaded client applications - additional considerations

	Fastpath (trusted) applications
	MQI function calls within signal handlers
	Signals during MQI calls
	User exits and installable services

	New function for Sun Solaris only
	Sun Workshop C++ Compiler 5.0 and 6.0
	Communications support extended to include SNAP–IX
	Configuration parameters for an LU 6.2 connection using SNAP–IX
	Explanation of terms
	Establishing a session using SNAP–IX
	MQSeries for Sun Solaris sender-channel definitions using SNAP-IX SNA

	New function for AIX only
	Support for draft 10 threads
	Enhanced support for Communications Server for AIX V5

	Chapter 4. New function in MQSeries for AS/400 V5.2 only
	CL commands
	ENDCCTJOB option to the ENDMQM (End message queue manager) CLcommand

	Exception handling
	Unthreaded applications
	Threaded applications
	Synchronous signals
	Asynchronous signals

	Access to MQSeries objects
	Support for nonthreaded listener

	Appendix. Notices
	Trademarks

	Index
	Sending your comments to IBM

